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Abstract. We present a new benchmark suite for parallel comput-
ers. SPEComp targets mid-size parallel servers. It includes a num-
ber of science/engineering and data processing applications. Parallelism
is expressed in the OpenMP API. The suite includes two data sets,
Medium and Large, of approximately 1.6 and 4 GB in size. Our overview
also describes the organization developing SPEComp, issues in creating
OpenMP parallel benchmarks, the benchmarking methodology underly-
ing SPEComp, and basic performance characteristics.

1 Introduction

Parallel program execution schemes have emerged as a general, widely-used com-
puter systems technology, which is no longer reserved for just supercomputers
and special purpose hardware systems. Desktop and server platforms offer mul-
tithreaded execution modes in today’s off-the shelf products. The presence of
parallelism in mainstream computer systems necessitates development of ade-
quate yardsticks for measuring and comparing such platforms in a fair manner.

Currently, no adequate yardsticks exist. Over the past decade, several com-
puter benchmarks have taken aim at parallel machines. The SPLASH [7] bench-
marks were used by the research community, but have not been updated recently
to represent current computer applications. Similarly, the Perfect Benchmarks [2]
used to measure high-performance computer systems at the beginning of the
90s. They included standard, sequential programs, which the benchmarker had
to transform for execution on a parallel machine. The Parkbench effort [6] was
an attempt to create a comprehensive parallel benchmark suite at several sys-
tem levels. However, the effort is no longer ongoing. The SPEChpc suite [4, 3] is
a currently maintained benchmark for high-performance computer systems. It
includes large-scale computational applications.

In contrast to these efforts, the goal of the present work is to provide a
benchmark suite that

is portable across mid-range parallel computer platforms,

— can be run with relative ease and moderate resources,

represents modern parallel computer applications, and

addresses scientific, industrial, and customer benchmarking needs.



Additional motivation for creating such a benchmark suite was the fact that
the OpenMP API (www.openmp.org) has emerged as a de-facto standard for
expressing parallel programs. OpenMP naturally offers itself for expressing the
parallelism in a portable application suite. The initiative to create such a suite
was made under the auspices of the Standard Performance Evaluation Corpo-
ration (SPEC, www.spec.org), which has been developing various benchmark
suites over the last decade. The new suite is referred to at SPEComp, with the
first release being SPEComp2001.

The SPEC organization includes three main groups, the Open Systems Group
(OSG), best known for its recent SPEC CPU2000 benchmark, the Graphics
Performance Characterization Group (GPC), and the High Performance Group
(HPG). The SPEComp initiative was taken by the HPG group, which also devel-
ops and maintains the SPEChpc suite. Current members and affiliates of SPEC
HPG are Compaq Computer Corp., Fujitsu America, Intel Corp., Sun Microsys-
tems, Silicon Graphics Inc., Argonne National Lab, Leibniz-Rechenzentrum, Na-
tional Cheng King University, NCSA /University of Illinois, Purdue University,
Real World Computing Partnership, the University of Minnesota, Tsukuba Ad-
vanced Computing Center, and the University of Tennessee. In contrast to the
SPEChpc suite, we wanted to create smaller, more easily portable and executable
benchmarks, targeted at mid-range parallel computer systems. Because of the
availability of and experience with the SPEC CPU2000 suite, we decided to
start with these applications. Where feasible, we converted the codes to parallel
form. With one exception, all applications in SPEComp2001 are derived from
the CPU2000 suite. We also increased the data set significantly. The first release
of the suite includes the Medium data set, which requires a computer system
with 2GB of memory. An even larger data set is planned for a future release. An-
other important difference to the SPEC CPU2000 benchmarks is the run rules,
which are discussed in section 2.2.

The remainder of the paper is organized as follows. Section 2 gives an
overview of the benchmark applications. Section 3 presents issues we faced in
developing the OpenMP benchmark suite. Section 4 discusses basic SPEComp
performance characteristics.

2 Overview of the SPEComp Benchmarks

2.1 The SPEComp2001 Suite

SPEComp is fashioned after the SPEC CPU2000 benchmarks. Unlike the SPEC
CPU2000 suite, which is split into integer and floating-point applications,
SPEComp2001 is partitioned into a Medium and a Large data set.

The Medium data set is for moderate size SMP (Shared-memory MultiPro-
cessor) systems of about 10 CPUs. The Large data set is oriented to systems with
30 CPUs or more. The Medium data sets have a maximum memory requirement
of 1.6 GB for a single CPU, and the Large data sets require up to 6 GB. Run
times tend to be a bit long for people used to running SPEC CPU benchmarks.



Table 1. Overview of the SPEComp2001 Benchmarks

Benchmark name|Applications Language|# lines
ammp Chemistry /biology C 13500
applu Fluid dynamics/physics Fortran | 4000
apsi Air pollution Fortran 7500
art Image Recognition/neural networks C 1300
facerec Face recognition Fortran 2400
fma3d Crash simulation Fortran | 60000
gafort Genetic algorithm Fortran 1500
galgel Fluid dynamics Fortran | 15300
equake Earthquake modeling C 1500
mgrid Multigrid solver Fortran 500
swim Shallow water modeling Fortran 400
wupwise Quantum chromodynamics Fortran 2200

Single CPU times can exceed 10 hours for a single benchmark on a single state-
of-the-art processor. Of the twelve SPEComp2001 applications, nine codes are
written in Fortran and three are written in C. Table 1 shows basic features of the
benchmarks. The suite includes several large, complex modeling and simulation
programs of the type used in many engineering and research organizations. The
application areas include chemistry, mechanical engineering, climate modeling,
physics, image processing, and decision optimization.

2.2 SPEComp Benchmarking Methodology

The overall objective of the SPEComp benchmark suite is the same as that
of most benchmarks: to provide the user community with a tool to perform
objective series of tests. The test results serve as a common reference in the
evaluation process of computer systems and their components.

SPEComp provides benchmarks in the form of source code, which are com-
piled according to a specific set of rules. It is expected that a tester can obtain a
copy of the suite, install the hardware, compilers, and other software described
in another tester’s result disclosure, and reproduce the claimed performance
(within a small range to allow for run-to-run variation).

We are aware of the importance of optimizations in producing the best system
performance. We are also aware that it is sometimes hard to draw an exact line
between legitimate optimizations that happen to benefit the SPEComp bench-
marks and optimizations that specifically target these benchmarks. However,
with the list below, we want to increase awareness among implementors and end
users towards the issues related to unwanted benchmark-specific optimizations.
Such optimizations would be incompatible with the goal of fair benchmarking.

The goals of the SPEComp suite are to provide a reliable measurement of
SMP system performance, and also to provide benchmarks where new technol-
ogy, pertinent to OpenMP performance, can be evaluated. For these reasons,
SPEC allows limited source code modifications, even though it possibly compro-



mises the objectivity of the benchmark results. We will maintain this objectivity
by implementing a thorough review process.

To ensure that results are relevant to end-users, we expect that the hard-
ware and software implementations used for running the SPEComp benchmarks
adhere to the following conventions:

— Hardware and software used to run the SPEComp benchmarks must provide
a suitable environment for running typical C and FORTRAN programs.

— Optimizations must generate correct code for a class of programs, where
the class of programs must be larger than a single SPEComp benchmark or
SPEComp benchmark suite. This also applies to assertion flags and source
code modifications that may be used for peak measurements.

— Optimizations must improve performance for a class of programs where the
class of programs must be larger than a single SPEComp benchmark or
SPEComp benchmark suite.

— The vendor encourages the implementation for general use.

— The implementation is generally available, documented and supported by
the providing vendor.

Benchmarking results may be submitted for a base, and optionally, a peak run.
The base run is compiled and executed with a single set of compiler flags, and no
source code modification is permitted. For the peak run, separate compiler flags
may be used for each program, and limited source code modifications, restricted
to the optimization of parallel performance, are permitted.

3 Issues in Developing an OpenMP Benchmark Suite

Several issues had to be resolved in developing the SPEComp suite. These issues
include transforming the original codes to OpenMP, resolving portability prob-
lems, defining new data sets, creating self-validation code for each benchmark,
and developing benchmark run tool.

3.1 Transforming Sequential Applications to OpenMP

A major effort in creating SPEComp was to convert the original, sequential
programs into OpenMP parallel form. We give brief descriptions of the major
transformation steps in creating OpenMP parallel programs.

To analyze parallelism in the given codes, we used a mix of application-level
knowledge and program-level analysis. In several codes we started by manually
inlining subroutine calls for easier interprocedural analysis. We then identified
variables that are defined within potential parallel regions, and variables that
are “live out” (e.g. formal parameters in a subroutine or function call, function
return value, and COMMON blocks).

We declared as PRIVATE scalar variables that are defined in each loop iteration
and that are not live out. There were a few instances of LASTPRIVATE variables.
We then identified any scalar and array reductions. Scalar reductions were placed
on OpenMP REDUCTION clauses. Array reductions were transformed by hand
(Note, that the OpenMP 2.0 specification supports array reductions).



ammp: ammp was by far the most difficult program to parallelize. In addition to
directives, we added 16 calls to various OpenMP subroutines. There were only
13 pragmas added, but extensive revisions of the source base were necessary to
accommodate parallelism. A few hundred lines of source code were moved or
modified to get acceptable scalability. Key to getting scalability was the organi-
zation of the program using vector lists instead of linked lists.

applu: We added a total of 50 directives, with almost all simply a form of
PARALLEL or DO. A NOWAIT clause was added for the terminator of one loop
to improve scalability.

apsi: The main issue in transforming apsi was to privatize arrays that are sec-
tions of larger, shared arrays. We did this by declaring separate arrays in the
subroutine scope. The size of the arrays is derived from the input parameters
(MAX(nx,ny,nz)). Another way to do this is to ALLOCATE the arrays inside OMP
PARALLEL but before OMP DO. Several simple induction variable also had to be
substituted in this code. In performing these transformations we followed the
parallelization scheme of the same code in [5].

art: For art, one difficulty encountered in defining a large data set with reason-
able execution time involved the use of the -objects switch. When the -objects N
switch is invoked (N is an integer specifying the number of objects to simulate),
the neural network simulates the learning of several more objects than actually
trained upon. art’s memory requirements scale quadratically with the number of
learned objects. Unfortunately, the execution time also scales quadratically due
to the F2 layer retry on a mismatch. The art 2 algorithm essentially tests every
learned object against the current inputs in a prioritized manner (more probable
matches are tested first). To reduce the execution time, the number of F2 layer
retries was limited to a small constant value. The reduction still allowed the real
objects to be found.

facerec: In this code, pictures in an album are compared against a probe gallery.
Both the generation of the album graphs, and the comparison of the album
to the probe gallery are parallelized. The parallelization of the probe gallery
comparison, which takes up almost all of the computation time, is done on the
probe picture level. This is a ”shared nothing” parallelization, which is achieved
by copying the album graphs into a private array. This method performs well on
systems with nonuniform memory access. There still remain many opportunities
for parallelism inside the photo gallery comparison code. These opportunities
could be exploited using nested parallelism. It would facilitate scaling to larger
numbers of processors.

fmadd: fma3d is the largest and most complex code in the suite. There are over
60,000 lines of code, in which we added 127 lines of OpenMP directives. Nearly
all directives were of the PARALLEL or DO variety. There were about a dozen
THREADPRIVATE directives for a common block, ten reductions, a critical section,



and a number of NOWAIT clauses. Still, locating the place for these directives was
not too difficult and resulted in reasonable scalability.

gafort: We applied three major transformations. First, the “main Generation
loop” was restructured so that it is private. It enabled parallelization of the
“Shuffle” loop outside this major loop. Inlining of two subroutines expanded this
main loop, reducing a large number of function calls. The second transformation
concerns the “Random Number Generator”. It was parallelized without changing
the sequential algorithm. Care was taken to reduce false-sharing among the state
variables. Third, the “Shuffle” loop was parallelized using OpenMP locks. The
parallel shuffle algorithm differs from the original sequential algorithm. It can
lead to different responses for different parallel executions. While this method
leads to better scalability and is valid from the application point of view, it made
the implementation of the benchmark validation procedure more difficult.

galgel: This code required a bit more attention to parallelization than most,
because even some smaller loops in the LAPACK modules need OpenMP direc-
tives, and their need became apparent only when a significant number of CPUs
were used. A total of 53 directives were added with most being simple PARALLEL
or DO constructs. A total of three NOWAIT clauses were added to aid in scalability
by permitting work in adjacent loops to be overlapped.

equake: One of the main loops in this code was parallelized at the cost of sub-
stantial additional memory allocation. It is an example of memory versus speed
tradeoff. Three small loops in the main timestep loop were fused to create a
larger loop body and reduce the Fork-Join overhead proportionally. The most
time-consuming loop (function smvp) was parallel, but needed the transforma-
tion of array reductions. The initialization of the arrays was also parallelized.

mgrid: This code was parallelized using an automatic translator. The code is
over 99% parallel. The only manual improvement was to avoid using multiple
OMP PARALLEL/END PARALLEL constructs for consecutive parallel loops with no
serial section in-between.

swim: In this code we added parallel directives to parallelize 8 loops, with a
reduction directive needed for one loop. Swim achieves nearly ideal scaling for
up to 32 CPUs.

wupwise: The transformation of this code to OpenMP was relatively straight-
forward. We first added directives to the matrix vector multiply routines for
basic OpenMP parallel do in the outer loop. We then added OpenMP directives
to the LAPACK routines (dznrm2.f zaxpy.f zcopy.f zdotc.f zscal.f). We
also inserted a critical section to dznrm2.f for a scaling section. Reduction di-
rectives were needed for zdotc.f and zscal.f. After these transformations,
wupwise achieved almost perfect scaling on some SMP systems.



3.2 Defining Data Sets and Running Time

An important part of defining a computer benchmark is the selection of appro-
priate data sets. The benchmark input data has to create an adequate load on
the resources of the anticipated test machines, but must also reflect a realistic
problem in the benchmark’s application domain. In our work, these demands
were not easy to reconcile. While we could identify input parameters of most
codes that directly affect the execution time and working sets (e.g., time steps
and array sizes), it was not always acceptable to modify these parameters indi-
vidually. Instead, with the help of the benchmark authors, we developed input
data sets that correspond to realistic application problems. Compared to the
SPEC CPU2000 benchmarks, SPEComp includes significantly larger data sets.
This was considered adequate, given the target machine class of parallel servers.
The split into a Medium (< 2GB) and a Large (< 8GB) data set intends to
accommodate different machine configurations, but also provides a benchmark
that can test machines supporting a 64 bit address space.

3.3 Issues in Benchmark Self-Validation

An important part of a good benchmark is the self validation step. It indicates
to the benchmarkers that they have not exploited overly aggressive compiler op-
tions, machine features, or code changes. In the process of creating SPEComp
we had to resolve several validation issues, which went beyond those arising in
sequential benchmarks. One issue is that numerical results tend to become less
accurate when computing in parallel. This problem arises not only in the well-
understood parallel reductions. We have also observed that advanced compiler
optimizations may lead to expression reorderings that invalidate a benchmark
run (i.e., the output exceeds the accuracy tolerance set by the benchmark de-
veloper) on larger numbers of processors. Another issue arose in benchmarks
that use random number generators. The answer of such a program may de-
pend on the number of processors used, making a validation by comparing with
the output of a sequential run impossible. To address these issues, we found
benchmark-specific solutions, such as using double-precision and identifying fea-
tures in the program output that are invariant of the number of processors.

3.4 Benchmark Run Tools

Creating a valid benchmark result takes many more steps than just running
a code. Procedural mistakes in selecting data sets, applying compilation and
execution options, and validating the benchmark can lead to incorrect bench-
mark reports on otherwise correct programs. Tools that support and automate
this process are an essential part of the SPEC benchmarks. The run tools for
SPEComp2001 were derived from the SPEC CPU2000 suite. Typically, bench-
markers modify only a small configuration file, in which their machine-dependent
parameters are defined. The tools then allows one to make (compile and link)
the benchmark, run it, and generate a report that is consistent with the run
rules described in Section 2.2.



3.5 Portability Across Platforms

All major machine vendors have participated in the development of
SPEComp2001. Achieving portability across all involved platforms was an im-
portant concern in the development process. The goal was to achieve functional
portability as well as performance portability. Functional portability ensured
that the makefiles and run tools worked properly on all systems and that the
benchmarks ran and validated consistently. To achieve performance portabil-
ity we accommodated several requests by individual participants to add small
code modifications that take advantage of key features of their machines. It was
important in these situations to tradeoff machine-specific issues against perfor-
mance properties that hold generally. An example of such a performance feature
is the allocation of lock variables in gafort. The allocation of locks was moved
into a parallel region, which leads to better performance on systems that provide
non-uniform memory access times.

4 Basic SPEComp Performance Characteristics

We present basic performance characteristics of the SPEComp2001 applica-
tions. Note, that these measurements do not represent any SPEC benchmark
results. All official SPEC benchmark reports will be posted on SPEC’s Web
pages (www.spec.org/hpg/omp). The measurements were taken before the fi-
nal SPEComp2001 suite was approved by SPEC. Minor modifications to the
benchmarks are still expected before the final release. Hence, the given numbers
represent performance trends only, indicating the runtimes and scalability that
users of the benchmarks can expect. As an underlying machine we give a generic
platform of which we know clock rate and number of processors.

Table 2. Characteristics of the parallel execution of SPEComp2001

Benchmark| Parallel Amdahls % Fork-Join Number of
Coverage|Speedup (8 CPU)|Overhead (8 CPU)|Parallel Sections
ammp 99.2 7.5 0.0008336 7
applu 99.9 7.9 0.0005485 22
apsi 99.9 7.9 0.0019043 24
art 99.5 7.7 0.0000037 3
equake 98.4 7.2 0.0146010 11
facerec 99.9 7.9 0.0000006 3/2!
fma3d 99.5 7.7 0.0052906 92/30"
gafort 99.9 7.9 0.0014555 6
galgel 96.8 6.5 4.7228800 32/29"
mgrid 99.9 7.9 0.1834500 12
swim 99.5 7.7 0.0041672 8
wupwise 99.8 7.9 0.0036620 6

T static sections / sections called at runtime
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Fig. 1. Execution times of the SPEComp2001 benchmarks on 2,4, and 8 processors of
a generic 350MHz machine.

Figure 1 shows measurements taken on 2, 4 and 8 processors of a 350MHz
machine. The numbers indicate the time one has to expect for running the
benchmark suite. They also show scalability trends of the suite. Table 2 shows
the parallel coverage for each code, which is the percentage of serial execution
time that is enclosed by a parallel region. This value is very high for all appli-
cations, meaning that these codes are thoroughly parallelized. Accordingly, the
theoretical “speedup by Amdahl’s Law” is near-perfect on 8 processors, as shown
in the third column. Column four shows the “Fork-Join” overhead, which is com-
puted as the (tf; - N)/toverail, Where toyerqn is the overall execution time of the
code, N is the dynamic number of invocations of parallel regions, and ty; is the
Fork-Join overhead for a single parallel region. We have chosen ty; = 10+p-2 ps,
where p is the number of processors. This is a typical value we have observed.
The table shows that the Fork-Join overhead is very small for all benchmarks,
except for galgel. It indicates that, in all but one codes, the overhead associated
with OpenMP constructs is not a factor limiting the scalability. Column five
shows the static number of parallel regions for each code. A detailed analysis of
the performance of SPEComp2001 can be found in [1].

5 Conclusions

We have presented a new benchmark suite for parallel computers, called
SPEComp. We have briefly described the organization developing the suite as



well as the development effort itself. Overall, the effort to turn the originally se-
quential benchmarks into OpenMP parallel codes was modest. All benchmarks
are parallelized to a high degree, resulting in good scalability.

SPEComp is the first benchmark suite for modern, parallel servers that
is portable across a wide range of platforms. The availability of OpenMP
as a portable API was an important enabler. The first release of the suite,
SPEComp2001, includes a Medium size data set, requiring a machine with 2 GB
of memory. While the codes have been tuned to some degree, many further
performance optimizations can be exploited. We expect that the availability of
SPEComp will encourage its users to develop and report such optimizations.
This will not only lead to improved future releases of the suite, it will also show
the value of the new benchmarks as a catalyst for parallel computing technology.
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