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Abstract—Automatic parallelization of sequential programs
combined with tuning is an alternative to manual parallelization.
This method has the potential to substantially increase productiv-
ity and is thus of critical importance for exploiting the increased
computational power of today’s multicores. A key difficulty is
that parallelizing compilers are generally unable to estimate the
performance impact of an optimization on a whole program or a
program section at compile time; hence, the ultimate performance
decision today rests with the developer. Building an autotuning
system to remedy this situation is not a trivial task. This work
presents a portable empirical autotuning system that operates at
program-section granularity and partitions the compiler options
into groups that can be tuned independently.

To our knowledge, this is the first approach delivering an au-
toparallelization system that ensures performance improvements
for nearly all programs, eliminating the users’ need to experiment
with such tools to strive for highest application performance.

I. INTRODUCTION

Despite the enormous potential and importance of automatic
parallelization for increasing software productivity in today’s
multicore era, current compilers do not use this capability
as their default behavior. As we will show, both state-of-
the-art commercial and advanced research compilers, while
capable of improving the performance of many programs,
may also degrade the performance of individual codes. This
behavior would be unacceptable as the default of a compiler.
The primary reason is that there is insufficient knowledge at
compile time to make adequate optimization decisions. Even
though many advanced parallelization techniques exist today,
including several runtime decision methods, three decades of
autoparallelization research have not yet delivered the needed,
consistent compilation tools for multicores [1]-[5]. In this
paper, we will show that by building on advances in automatic
tuning, and by further improving this technology, compilers
can deliver automatically parallelized applications that ensure
performance greater or equal to their source programs. Our
results will demonstrate that this can be done with current
commercial as well as with research compilers.

We advance the employed, automatic tuning methods in
two ways. First, our new techniques support the optimization
of individual program sections. Doing so is both important
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and challenging. We will show that section-level tuning can
outperform whole-program tuning by up to 82%. The chal-
lenge is in managing the drastic growth in the search space
of optimization variants. Empirical tuning methods work by
evaluating many optimization variants and choosing the one
that performs the best at runtime [6]-[10]. During this process,
they need to consider interactions between the optimization
variants. This issue is already severe in existing, whole-
program tuning methods. The effect of an optimization may
depend significantly on the presence of another (e.g., unrolling
and vectorization influence each other). Therefore, a large
number of combinations of program optimizations need to be
evaluated. In our section-based tuning system, interactions also
occur between optimizations applied to different program sec-
tions. Therefore, combinations of program sections in different
optimization variants will need to be explored, further growing
the already large search space. We use a key observation to
manage this additional growth: Interactions between program
sections happen primarily among near neighbors. We will
consider potential interactions within windows of program
sections, but not across them. We will show that the window
size can be kept small, significantly limiting the increase in
program optimization time of our section-level tuning method.
Second, we introduce a portable tuning framework and
demonstrate its application to all parallelizers that we could
obtain. Creating portable tuning systems is critical, as the
development effort and thus cost is large. Re-usability in
tuning has not been addressed, so far; the many proposed
systems and techniques use substantially different frameworks
and components [11]-[16] . In particular, different approaches
use specialized optimization search spaces, which are custom-
built and navigated with specialized tuning engines. Our ap-
proach is two-fold. We use a framework that conceptualizes the
essential elements of empirical optimization, and we employ
a tuning definition system, through which the user (typically
the compiler developer) customizes the framework for the
task a hand. We will evaluate the implementation of this
approach for a range of parallelizing compilers and show that
the customization efforts are small.
This paper makes the following contributions.
« We introduce a novel, fast tuning algorithm that is able
to optimize individual program sections. To keep tuning
time low, it partitions the program into windows; it fully



accounts for the interaction of optimizations of different
sections within windows, but not across windows. Inde-
pendent optimization groups and code sections are tuned
simultaneously. We will show that section-based tuning
improves performance significantly, that a small window
size is sufficient, and that tuning times are reasonable.

o We present a portable, empirical tuning framework for
automatic parallelization, which we implement and eval-
uate on our CETUS source-to-source translator [3] as
well as the OpenUH [28], Rose [17], PGI [18], and ICC
compilers [19]. We will show that our tuning system
improves the performance of all these compilers, and the
porting effort to each compiler is small.

o Applying our tuning method turns all compilers into tools
where automatic parallelization can be used as the default
behavior. We will show that the performance of all
programs in our test suite (the NAS Parallel Benchmarks)
for all compilers mentioned above is at least as good
as the performance of the serial programs. Hence, users
can benefit from the performance gains of automatic
parallelization without risk of performance degradation.
This eliminates the need for users to experiment with
such tools. We will also show that, relative to the hand-
parallelized programs, tuned automatic parallelization
gains significant performance in half of our benchmark
suite and in one case exceeds the manually optimized
code.

The remainder of the paper is organized as follows: The
next section provides a system overview, including the tuning
model, system definition process, tuning algorithm, and search
space pruning method. Section III applies this tuning frame-
work to five compilers, Cetus, ICC, PGI, Rose, and OpenUH,
demonstrating its portability. Section IV evaluates our work
using the NAS parallel benchmarks. We discuss related work
in Section V. Section VI draws conclusions and discusses
future work.

II. PORTABLE TUNING SYSTEM

One aim of creating a portable tuning system is to make it
easy for compiler developers to plug their existing compiler
into a framework that applies empirical tuning. In this way,
compilers can be enhanced to find the best combination of their
optimization capabilities, using an offline process that is simi-
lar to profile-based compilation. The system should allow the
compiler developer to define compiler make information and
all possible optimization options. From this information, the
tuning system determines the best-performing program variant
for each code section. Recall a key challenge in doing so:
Because of the interactions of compiler optimizations within
and across program sections, the sheer number of possible
optimization combinations would make a brute-force approach
infeasible — leading to extremely long tuning times. This
paper pursues an approach that exploits locality of optimization
interactions [20] — distant program sections do not influence
each others significantly, allowing substantial pruning of the
number of optimization variants that need to be explored.

Fig. 1. High-level model of the automatic tuning system. Search Space Nav-
igation picks a next program version to be tried; Version Generation compiles
this version; and Empirical Measurement evaluates its performance at runtime.
The search space is generated and pruned based on the specifications from
the tuning definition file.

The focus of this paper is on developing such a portable
tuning system for improving automatic parallelization. To this
end, the following introduces a generic tuning model and
prototype that are applicable to a wide variety of scenarios.
We will demonstrate the portability to two commercial and
three research parallelizing compilers.

A. Tuning Model

Figure 1 shows the high-level model of our portable tuning
system. Program tuning proceeds in three steps. Search Space
Navigation iteratively traverses the space of all feasible combi-
nations of program optimizations, until a suitable “best” vari-
ant has been found. In each iteration, the current combination
is passed on to the Version Generator — typically a compiler —
which produces the code. Next, the performance gets evaluated
by the Empirical Measurement component. The performance
results are fed back to the Search Space Navigator, which
decides on a next iteration or terminates tuning.

This model can be configured through a System Specifi-
cation by means of a Tuning Definition File (TDF), which
defines all optimization options. The specifications include
compiler options for global as well as for section-level op-
timizations and allow the tuning system developer to indicate
which optimizations may interact with each other. In defining
these interactions, the tuning developer can be conservative;
independent optimizations will speedup the tuning process,
whereby specification inaccuracies may affect the performance
outcome but not correctness. The specification also expresses
strategies for partitioning programs into windows (typically
one to a few loops) that will be optimized independently.
Available strategies are the choice of a fixed or an adaptive
window size. A window size of one would amount to ignoring
all interactions between program sections. A window size of
oo would consider all interactions, even between distant sec-
tions, leading to long tuning times. We will show that a small
window size is sufficient. The TDF also defines the make
file information for compilers and runtime environments. The
portability of the proposed model lies in this configurability



and in the applicability to many tuning scenarios of compilers
and other areas.

The Automatic Search Space Builder processes the TDF
specifications and creates the search space of optimization
variants. The raw search space would be the full factorial of all
tuning option values and program sections. Pruning is crucial.
The key information enabling pruning is the program windows
(or p-windows), splitting the code into independently tunable
sections and the declared optimization dependences, allowing
groups of non-interacting optimizations to be formed (called
o-windows). The Search Space Builder creates an independent
search space for each p-window. Across o-windows, only the
sum of all optimization variants need to be explored, rather
than their Cartesian product.

For a program with N loops, and M binary optimization
options, the exhaustive search space size is 2(N*+M)_ Qur
tuning system, using p-window size n, prunes this space to
size 2" x OptSpace, where 2™ is independent of the program
size (i.e. 8 in our prototype), and OptSpace is the size of the
optimizations search space. To define OptSpace, let us assume
that the tuning system has L o-windows, with the ith o-window
size m;. Then, OptSpace equals Zle (2™#). Knowing that
2M equals HiL:1 (2™), it is clear that OptSpace is less than
2M as it represents the number of interacting techniques
combinations. In practice, the resulting search space is small
enough to allow efficient navigation.

An example shows the importance of pruning: a program
that has 6 loops with two binary tuning options (loop-
parallelization and function-inlining), and two discrete
tuning options (loop-tiling and permutation) with 4 val-
ues each, would have a raw search space of (26 —
1)(22)(4%) = 4032. With p-window size 3, only 448
variants are navigated during tuning in the worst case,
which is about 11% of the raw search space. For larger
applications, the raw search space is exponentially grow-
ing, while the number of variants being navigated (i.e.
tuning time) remains constant.

The Search Space Navigator traverses all independent
search spaces concurrently and determines, for each p-window,
a next optimization variant that will be empirically evaluated.
It calls the Version Generator to create the needed program
code. Once a final “best” program version has been found, the
Search Space Navigator calls the Version Generator one more
time to create the final combination of all best-performing p-
windows. Note that this final version may be different from
all program variants made during the tuning process, as it
combines the individually best-performing program sections.

The Version Generator creates the program variant as re-
quested by the Search Space Navigator. The necessary make
information for the needed compilation steps and the mapping
of optimization variants to command line flags is taken from
the TDF. Not all compilers are able to apply optimizations
to specific program sections. Our model includes a postpro-
cessing step, allowing compilers that generate OpenMP output
to enable or disable individual parallel loops. This is one

# this line is a comment

# new section begins with !
!Loop-Level Optimization Options
loop_tile 1 tile_size [4:256:%=4]
loop_unroll 1 wunroll_size [2:16:x=2]
loop_parallelize O

vec 1 vec_threshold [50:100:+=10]
!Program level Optimization Options
reduction 0

sign

!Options’ Dependencies
loop_tile loop_parallelize
'Windowing Strategy

fixed 3

lEnvironment Variables
OMP_NUM_THREADS [1:8]
IMake Definition

Fig. 2. Example of a Tuning Definition File (TDF). The TDF is composed
of several sections for specific sets of tuning options and their formats. Each
line describes one optimization technique. Dependencies are specified by
indicating the involved pair of techniques.

of the most important section-level tuning decision. Version
Generation also instruments each p-window with timing calls
(or, in general, performance counters). For compilers that do
not provide such instrumentation, the postprocessor provides
this feature as well.

The Empirical Measurement step executes the program vari-
ant and evaluates its performance. It sets runtime parameters
either as fixed values (given by TDF make information) or tun-
able parameters chosen by the Search Space Navigator (e.g.,
the number of threads). Independent measurements are taken
for each of the n p-windows. Thus, in a single program run,
an optimization variant is evaluated for n program sections,
leading to an additional reduction of the tuning time. The n
measurements are passed on to the Search Space Navigator
for deciding on the next iteration of the tuning process.

The following Section presents our prototype tuning system,
based on the described model.

B. Tuning System Prototype

This Section describes the implementation of the above
model in our portable tuning system. We will discuss TDF,
Search Space Generation and Navigation, Version Generation,
and Empirical Measurements.

1) TDF and Search Space Generation: Figure 2 shows
an example TDF. The TDF language contains the following
categories of information:

o Category-A defines binary and discrete optimization tech-
niques (aka tuning options, tunables, parameters, control
points, or degree of freedom in related work). The opti-
mizations may be applicable at the section level or pro-
gram level. All optimization options have discrete integer
values. Most common are binary options, switching a
technique on or off. An example of a multi-valued option
is loop unrolling, which may have a parameter of 2, 4, 8



or 16. Optimizations that are prerequisites for others are
combined into one multi-valued option. For example, if
the on/off option forward-substitution needs to be on for
the option substitute-only-integers/substitute-all to have
an effect, the two are combined into a three-valued op-
tion off/substitute-integers-only/substitute-all. Techniques
that belong to this category are represented by loop-
level/program-level optimization options sections in the
TDFE.

o Category-B defines the possible interactions among op-
timization techniques as a list of pairs. This category
is represented by Options’ Dependencies section in the
TDF.

o Category-C describes the windowing strategy to partition
a program into sections and tune each section individu-
ally. It can be either fixed or adaptive. This category is
represented by Windowing Strategy section in the TDF.

o Category-D: includes two groups of options:

— Tunable environment variables, such as the number
of threads used in the machine.

— Make definitions and fixed back-end compiler op-
tions as well as fixed environment variables. We use
a generic parametrized MakeFile.

This category is represented by Environment Variables
and Make Definition sections in the TDF.

The Automatic Search Space Builder processes this infor-
mation. Its key algorithm prunes the potentially combinatorial
number of optimization variants to a manageable size. To
this end, it partitions the search space into windows that will
be tuned individually. The partitioning happens for both the
program space (p-windows) and the optimization space (o-
windows). Our tuning prototype currently supports a fixed p-
window size. We will show that, in practice, a small size of up
to three loops is sufficient. Subroutines are boundaries for win-
dows; thus the partitioned programs may include p-windows
of one, two, and three loops. O-windows are formed based on
TDF-provided dependence information for the optimizations,
as described below. The optimizations within an o-window are
dependent; all combinations of options need to be explored.
The optimizations of different o-windows are independent; the
combined search space of two o-windows is only the sum of
the individual search spaces, not the product.

Figure 3 shows the automatic search space builder. For sim-
plicity, we will discuss the two partitioning steps separately;
in the implementation, the two steps form a single pruning
algorithm.

Algorithm 1 shows the optimization space partitioning. The
algorithm constructs a dependency graph, where optimizations
represent vertices and options’ dependencies form edges. Next,
the graph is partitioned into a set of connected components,
where each component represents an o-window of dependent
optimization options.

In practice, most generated graphs are not strongly con-
nected, which means not every pair of techniques within an
o-window are possibly interacting. Instead of trying exhaus-

Search Space Builder
Optimization
Techniques
Partitioner

Generate
Optimization
Space
Variants
Merging

Generate
Program
Space

Search Space

Program
Partitioner

Fig. 3. The Automatic Search Space Builder reads the TDF information
provided by the tuning developer and generates a pruned search space.
Pruning exploits the fact that distant program sections have little influence on
each other and non-interacting optimizations, per the TDF, can be evaluated
independently.

Algorithm 1 Generation of Optimization Space. After partitioning options
into o-windows based on dependencies, each o-window will have its own
subspace that can be navigated independently of all other subspaces.

1: GenOptimizationSpace()

2: input:tuning options (V1,V2 ..., Vn)

3: tuning options dependencies:(Vi, Vj) | 4,5 € [1 : n]
4: output:Set of optimization subspaces

5: begin:

6: Map options to vertices

7: Map dependencies to edges

8: Generate a forest graph G

. Partition GG into connected components

10: for each connected component G°“ C G do
11:  Start a new optimization subspace S-G°¢
12:  Color the vertices in G°°

13:  for each vertex V in G°¢ do

Re)

14: for each argument associated with V' do
15: add a new dimension to S-G¢

16: end for

17: Merge same colored dimensions in S-G*¢
18:  end for

19: end for

20: return set of optimization subspaces.

21: end.

tively all techniques’ combinations, the algorithm uses graph
coloring to decide the minimum number of combinations that
captures all interactions. Graph coloring finds the minimum
number of colors such that no two adjacent vertices share the
same color. Independent techniques are mapped to vertices
with the same color. For a graph with n colors, it needs
2™ combinations of techniques composing that graph. For
example, if V1 interact with V2, and V2 interact with V3,
two colors are sufficient for marking the resulting connected
component (graph). Thus, only four combinations are needed
( V1V2V3, V1V2V3, V1V2V3, V1V2V3 ) instead of
eight (assuming V1,V2, and V3 are binary techniques). This
algorithm guarantees a window search space size equal to the
size of the largest strongly connected component in the graph
(i.e. (V1,V2) or (V2,V3) in our example).

After partitioning is completed, each search space variant is
written to a file in the form of a list of loop-id, command line
tuning options applied to that loop, and p-window id. This file



is passed on to the Search Space Navigator.

2) Search Space Navigation: All p-windows have separate
search spaces. The Search Space Navigator traverses them
independently, picking a next variant for each window to be
evaluated next and calling the Version Generator with this
information. After each evaluation step, the measured points in
the search space are annotated with their performance results;
in addition, the best performance and corresponding point is
recorded for each p-window.

Because of the extensive pruning, the resulting search spaces
in our experiments were small enough, so that exhaustive
search of all points was feasible. Exhaustive search guarantees
to find the best version and demonstrates upper bounds of tun-
ing time. Heuristic algorithms are known that navigate faster,
but do not guarantee optimality [21]-[23]. These algorithms
can be substituted in a straightforward way.

Because windows can have different sizes, their search
spaces differ in size as well. After the navigation of smaller
p-windows has completed, their best version is used for the
remaining calls to the Version Generator.

For final version generation, the Search Space Navigator
simply passes the recorded best variants for each p-window to
the Version Generator. Whole-program optimizations are the
same for all p-windows.

3) Version Generation: A Program version is expressed by
the combination of all its p-windows variants and the whole-
program optimizations. Optimization options are expressed as
command line options; a loop is identified by an automatically
generated loop ID, which is composed of the subroutine name
containing that loop and a serial number reflecting the loop
position.

We extended the Cetus translator to support section-level
tuning by adding a Selective Transform Pass that applies trans-
formations to individual loops, as specified by the p-window
variants. To supports enabling and disabling of OpenMP
parallel loops, we implemented a postprocessor in Cetus that
selectively removes OpenMP parallel loop directives based
on the variant description obtained from the Space Navigator.
Other compilers do not support section-level tuning. We will
show later how these capabilities are also used to support
section-level tuning and enabling/disabling individual parallel
loops for the Rose compiler.

The proposed tuning system uses automatic source code
instrumentation implemented in Cetus. It measures applica-
tion performance by annotating the source code before and
after loop nests with timer calls. It provides enough timing
information about each section in the program with negligible
overhead.

4) Empirical Measurement: The code made by the Version
Generator is already instrumented for taking performance
measurements. These may be overall timing measurements
for compilers that only support whole-program optimizations
or there may be section-level instrumentation for evaluating
individual p-windows. The Empirical Measurement step sets
the environment parameters according to the information con-
tained in the TDF and executes the program. Performance

results are gathered and passed on to the Search Space
Navigator. Empirical Evaluation measures all p-windows in
one program run; the largest p-window dominates tuning time.

To minimize the effect of measurement variations, the
system can be configured via TDF to set the number of
measurements repetitions. The system chooses the minimum
value of the repeated measurements, since delays are usually
caused by undesirable system effects. Performance results are
reported to the Search Space Navigator as a vector of loop
IDs and corresponding execution times.

Through the TDEF, our prototype system can be configured
to create a specific instant of a tuning system. The following
section describes how this has been done for five different
parallelizing compilers.

III. CASE STUDIES IN TUNED AUTOPARALLELIZATION

We applied the described portable tuning system to five
compilers. ICC and PGI are commercial compilers, while
Cetus, OpenUH, and Rose are research compilers.

A. Tuning the Cetus Autoparallelizer

This section presents a customized tuning system for the
C-to-OpenMP translator that is part of the Cetus compiler
infrastructure. We briefly describe these techniques together
with their needs and opportunities for tuning.

The Cetus compiler infrastructure is a source-to-source
translator for C programs. Input source code is automatically
parallelized using advanced static analysis, such as scalar
and array privatization, symbolic data dependence testing,
reduction recognition and induction variable substitution. The
translator supports the detection of loop-level parallelism and
the generation of C code annotated with OpenMP parallel
directives [24].

Cetus uses a set of optimization techniques, some of which
are applied at the loop level, others are global optimiza-
tions applied at the program level. We include three cat-
egories of such techniques: techniques that assist program
analysis include symbolic analysis and subroutine inlining;
parallelism-enabling techniques include data privatization, re-
duction parallelization and induction variable recognition;
locality-enhancement techniques include loop interchange and
tiling. Specifics of these techniques are described in [3].

There are many tuning opportunities in Cetus. Eager par-
allelization of small, inner loops could add significant over-
head. Aggressive inlining can lead to code with complex
expressions, reducing the parallel coverage. Tiling strongly
interacts with parallelization [25]. Because tiling introduces
additional code and control overhead, performance degradation
is expected if both techniques are applied indiscriminately.
Loop interchange also interacts with parallelization, as moving
a parallel loop to an inner position increases parallel loop
overheads. Reduction transformation is sometimes expensive
because of inefficient added code that affects back-end compil-
ers and other techniques. The closed-form expression produced
by induction variable substitution introduces more costly op-
erations. Even though symbolic analysis may help recognize



parallel loops, they may be too small to improve performance
and introduce overhead instead [26].

We define the portable system to tune profitable loop-
parallelization [27] and function-inlining techniques by se-
lectively applying these techniques to loop nests when they
improve performance. Inlining is often applied as a pre-pass
to optimization, making it difficult to tune. Our system tunes
inlining efficiently. It also tunes some architecture-dependent
transformation techniques, such as loop tiling and loop per-
mutation. Cetus is tuned at section-level granularity.

B. Tuning the OpenUH Compiler

The OpenUH compiler is a branch of the Open64 compiler
maintained by the High Performance Computing Tools (HPC-
Tools) group of the University of Houston. The OpenUH is a
robust, optimizing, portable OpenMP compiler, which trans-
lates OpenMP 2.5 (www.openmp.org) directives in conjunc-
tion with C, C++, and FORTRAN 77/90 (and some FORTRAN
95). The OpenUH compiler’s major optimization components
are the inter-procedural analyzer, the loop nest optimizer
and global optimizer. In order to achieve portability while
preserving most optimizations, the compiler includes an IR-
to-source translators to produce compilable code immediately
before the code generator [4], [28].

We tune auto parallelization (apo), loop unrolling (unroll),
loop nest optimization (interchange, blocking, prefetch), func-
tion inlining (inline), optimization level (O,,), inter procedural
analysis (alias, constant propagation, dead function elimina-
tion). OpenUH does not support section-level optimization; it
is tuned at the program level.

C. Tuning the ICC Compiler

The auto-parallelization feature of the Intel C++ Compiler,
invoked by the ‘-parallel’ option, automatically translates serial
portions of the input program into equivalent multithreaded
code. The autoparallelizer analyzes the dataflow of the pro-
gram’s loops and generates multithreaded code for those loops
that can be safely and efficiently executed in parallel. This
enables the potential exploitation of the parallel architecture
found in symmetric multiprocessor (SMP) systems [19].

The ICC compiler also includes a heuristic for deciding
when a parallel loop benefits performance. Via a user-defined
threshold, ICC tries to balance the overhead of creating
multiple threads versus the amount of work available to be
shared among the threads.

ICC’s Compiler options included in our tuning system
are auto-parallelization (parallel), loop unrolling (unroll),
loop blocking (blocking), vectorization (vec), data prefetch
(prefetch), scalar replacement (scalar-rep), data alignment
(align), optimization level (O,,), and function inlining (inline).
The ICC compiler does not support section-level optimization;
it is tuned at the program level.

D. Tuning the PGI Compiler

The PGI compiler incorporates global optimization, vector-
ization, software pipelining, and shared-memory paralleliza-
tion capabilities. Vectorization transforms loops to improve

memory access performance and makes use of packed SSE
instructions, which perform the same operation on multiple
data items concurrently. Unrolling replicates the body of loops
to reduce loop branching overhead and provide better oppor-
tunities for local optimization, vectorization and scheduling of
instructions. Performance for loops on systems with multiple
processors may also improve using the parallelization features
of the PGI compilers [18], [29]. The PGI compiler is tuned at
the program level.

Compiler options being tuned include auto-parallelization
(concur), vectorization (vect), function inlining (inline), loop
unrolling (unroll), inter-procedural analysis and optimization
(ipa), cache aligning (align), partial redundancy elimination
(PRE), and optimization level (O,). For a more detailed
description of these options, we refer to the PGI user guide
[18].

E. Tuning the Rose Compiler

Rose is an open-source compiler infrastructure to build
source-to-source program transformation and analysis tools
for large-scale Fortran 77/95/2003, C, C++, OpenMP, and
UPC applications [17]. Rose provides several optimizations
including autoparallelization, loop unrolling, loop blocking,
loop fusion, loop fission, and inlining. Loop optimizations
and autoparallelization are separate projects under Rose that
are not yet integrated. Currently, we tune autoparallelization
only. We used the Cetus postprocessor to support section-level
tuning of the Rose autoparallelizer. Rose successfully compiles
five out of eight NAS Parallel benchmarks.

F. Tuning System Building Time

Most of the effort and time spent when building the tuning
systems for these compilers was in reading the compilers’
documentations, understanding the behaviour of the under-
lying techniques, and determining the possible interactions
among them. On average, building a tuning system consumed
around five working days, from downloading and installing
the compiler, to the beginning of the tuning process. Writing
the tuning definition files consumed minor time, as the TDFs
include a few tens of lines of code. We expect this to be
the typical customization time for a developer who is not yet
familiar with the underlying compiler.

All compilers discussed previously have rich sets of options
affecting their performance. Playing the role of compiler
writer, we have chosen the most important options and cor-
responding argument ranges to include in the tuning system
specifications. We excluded options that have a consistent neg-
ative effect. To do so, we performed a preliminary step using
the following algorithm: Starting from the base case, where
all techniques are turned on, we turned off one technique at a
time. Techniques with consistent negative performance effects
were not included as tuning options. This algorithm has a
complexity of O(n), where n is the number of optimizations.

IV. PERFORMANCE EVALUATION

This section presents a comprehensive experimental evalu-
ation of our portable tuning system using the metric ’speedup
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Fig. 4. Speedup of tuned Cetus, OpenUH, PGI, Rose, and ICC compilers over the serial version of NAS Parallel Benchmarks. We use Class W for training,
while Class A and B are production datasets. Hand Parallel refers to the speedup of the original NAS parallel benchmarks. Rose speedups are not available

for CG, EP, and IS.

over the serial program”. The results shows that the tuning
system ensures non-degrading performance in all cases and
often leads to significant speedup. Section-level tuning im-
proves substantially over whole-program tuning and over un-
tuned optimization. The results also quantify characteristics of
the tuning system itself. They show that our system feasibly
navigates large search spaces and that a small p-window size
is sufficient.

A. Benchmarks Characteristics

The NAS Parallel Benchmarks (NPB) are designed to help
evaluate the performance of parallel supercomputers. The
benchmarks are derived from Computational Fluid Dynamics
(CFD) applications. Four classes of problems are used in the
evaluation. These are Class W, Class A, Class B, and Class C.
The classes differ mainly in the sizes of principle arrays, which
generally affects the number of iterations of contained loops
[30], [31]. Because of the availability of OpenMP program
variants, the NPB suite is favorable for evaluating parallelizing
compilers, providing hand-optimized reference points. We use
the NPB suite implemented in the C language [32].

B. Experiment Setup

We conducted the experiments on a single-user x86-64
machine with two 2.5 GHz Quad-Core AMD 2380 processors
and a 32GB memory. The running OS is Red Hat Enterprise
Linux. We used the Intel ICC compiler version 11.1, UHCC
version 4.2, PGCC version 9.0-3 64 bit, and Rose compiler
version 0.9.5a. We used all eight NPB programs. The W data
set is used during tuning; A, B, and C are used as production
datasets.

C. Overall Evaluation of Optimizing Compilers

This section evaluates the five tuned compilers described in
Section III. These include Cetus, two important commercial
compilers (Intel’s ICC and the PGI compilers) as well as the
Rose and OpenUH research compilers. The hand-parallelized
versions of the programs are used as reference points. The
serial versions of NPB were obtained by compiling the codes
with the serial compiler options. Hand Parallel code refers to

the original parallel benchmarks. Figure 4 shows the overall
results of the tuned compilers.

Cetus shows significantly better speedups over serial exe-
cution than ICC ad PGI compilers. This indicates that not yet
all of the advanced parallelization techniques developed in re-
search compilers have been transferred to industrial products.
In four of the programs, the best Cetus version matches, and
in one of these cases (SP) outperforms, the hand-parallelized
codes. We find that, in roughly 50% of scientific/engineering
codes, parallelizers yield substantial improvements.

One important reason for the superior performance of the
tuned SP code is that Hand Parallel chooses to parallelize an
important loop at the second level, while our system selects
the outer loop to be parallel. Another reason is that our
system parallelizes profitable small loops that were considered
inefficient by the programmer of the benchmark.

OpenUH reaches hand parallel performance in CG, and
outperforms it in SP. PGI and ICC show a noticeable speedup
—close to hand parallel- in SP. The Rose autoparallelizer we
downloaded was unable to compile three of the benchmarks:
CG, EP, and IS.

D. Efficiency of Section-Level Tuning

This section compares the performance of tuning at the
program level, which is the common practice of all previous
work, versus the proposed section-level tuning. To do that,
we created instances of our tuning system to tune the Cetus
and Rose Compilers at the program level, using the same
optimization techniques as described in Section III. Figure 5
compares the average speedup of Cetus and Rose tuned at
section-level versus program-level tuning, relative to the NAS
serial programs for datasets W, A, B, and C.

The detailed results revealed that section-level tuning clearly
outperforms program-level tuning in two benchmarks: LU and
SP. Section-level tuning improves performance by 42% over
program-level tuning on the best case.
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Fig. 5. Speedup of Tuned programs at section-level versus program-level,
relative to the NAS serial programs using the Cetus and Rose compilers.
Measurements are averaged over the NAS suite. Class W is used for training,
while Class A, B, and C are used as production datasets

E. Tuning Impact on Performance

This section quantifies the impact of tuning for the different
compilers. We compare the average performance of tuned NAS
benchmarks with untuned and profile-based tuned programs
supported by some of the compilers under study. Untuned
programs are generated by turning on all optimizations. The
Profile Based Tuned versions are generated using a compile-
time profitability test in Cetus, profile feedback optimization in
the PGI compiler, feedback directed optimization in OpenUH,
and profile guided optimization in ICC. Rose does not include
a profitability test; we used the described postprocessor to tune
profitability in Rose. Figure 6 shows the results.

BUntuned OPofile Based Tuned O Empirically Tuned

OpenUH ‘ PGI ‘ ICC

Fig. 6. Speedup contribution percentage of our tuning system (7uned) versus
Untuned programs and profile Based tuned for Cetus, OpenUH, PGI, Rose,
and ICC compilers on average over the NAS suite. Profile based tuning is
shown for the compilers that support it.

Detailed results revealed that, without tuning, all compil-
ers degrade performance in some of the benchmarks. For
example, the ICC compiler degrades performance to 82% in
LU, OpenUH degrades performance to 78% in BT, the PGI
compiler degrades performance to 83% in MG, Rose degrades
performance to 25% in FT, and Cetus degrades performance
to 21% in LU.

Untuned performance does not degrade in the PGI, ICC,
and OpenUH compilers on average, which we attribute to their
conservative optimizations. OpenUH uses a built-in profitabil-
ity test for its techniques, explaining the minor effect of profile

based optimization. On the other side, aggressive optimization
capabilities in Cetus provide ample opportunity for the tuner
to improve performance as shown in Figure 4.

Comparing results in Figures 6 and 5, we found that the gain
of tuning over profiling seems less than over whole-program
tuning. This means that whole-program tuning performs less
than profile-based optimization. Profile-based optimization lies
between program-level and section-level tuning. It is similar to
section-level tuning, with a p-window size of 1, and a constant
parallelization threshold for all loops in the program. This
optimization method does not account for interactions among
loops.

F. Tuning Window Size

The choice of the program window size is important. We
provide empirical evidence that a small p-window size of three
is a good choice, which we have used in all implementations.
Figure 7 compares the speedup of Cetus-tuned applications
as a function of the p-window size, while keeping all other
optimization options the same. The average performance of
the NAS suite reaches a maximum value at p-window size
three, validating our approach.
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Fig. 7. Effect of p-window size on performance for Cetus on average over

NAS benchmarks using dataset A.

G. Tuning Time

Table I compares the number of variants considered in
tuning the five compilers under study. It also shows the ratio
of measured variants to the raw search space size. Rose and
Cetus are tuned at the section level with p-window size three,
while the other compilers are tuned at the program level.

TABLE I
TUNING TIME IN TERMS OF MEASURED SEARCH SPACE SIZE. CETUS AND ROSE ARE
TUNED AT THE SECTION LEVEL; ALL OTHER COMPILERS ARE TUNED AT THE
PROGRAM LEVEL. COLUMN 3 SHOWS THE RATIO OF THE PRUNED SEARCH SPACE TO
THE RAW SEARCH SPACE.

gl Pruned Search | % of Space Tuning Avg Raw
Space Size Considered Granularity Space Size
OpenUH 36 1% Program-level 3600
PGI 60 3.9% Program-level 1536
ICC 540 1% Program-level 311040
Cetus 705 2% Section-level 35250
Rose 8 <1% Section-level 900

Tuning process for ICC, PGI, and OpenUH compilers
consumed less than 15 minutes on average over all benchmark



suite. Cetus and Rose required more than an hour in the worst
case; this is due to the high parallelization overhead of some
space variants as well as the high source-to-source translation
times for some techniques, such as inlining.

V. RELATED WORK

A lot of research considers autoparallelization and tuning.
To our knowledge, portability and re-usability across different
applications have not been addressed before. Our system is the
first to support section-level tuning and ensures performance
no less than the original programs.

A scalable auto-tuning system for compiler optimization
[11] using Active Harmony [33] reduces tuning time by
evaluating multiple search space variants concurrently using
a cluster of nodes [34]. This technique is known as parallel
search. Using a cluster of 64 nodes, within 10 steps of tuning,
they can exhaustively evaluate 640 variants. Their system
tunes permute, tile, unroll, data copy, split, and non-singular
on only kernels. Our system considers possible interactions
between loops, and prunes the search space. Our tuning system
evaluates multiple search space variants by combining them
into a single run on a single node. Parallel search could further
reduce tuning time.

The POET (Parametrized optimizations for empirical tun-
ing) provides an embedded scripting language for parametriz-
ing complex code transformations [12], but cannot overcome
an exponential search space. It empirically tunes loop inter-
change, blocking, and unrolling of two linear algebra kernels.
We tune a wider range of transformations on a full benchmark
suite.

Recent work uses POET to tune the Rose loop optimizer
[35]. All optimizations were re-implemented to support param-
eterization. The fine-grain parameterization allows to capture
optimization interactions. Our system does not require opti-
mization re-implementation. A new optimization can be added
to our portable system by means of a tuning definition file.

Different research projects exploit user-provided informa-
tion to enhance tuning. Dooley and Kale tune control points
that affect the MPI architecture and application characteristics
at runtime [36]. The user is required to define a control point
effect on performance (higher is better or lower is better).

The Tuning System for Software-Managed Memory Hier-
archies automatically tunes general applications to machines
with software-managed memory hierarchies [13]. It reduces
the search space dimensionality by grouping tunables (based
on memory level affected) and searching each group sepa-
rately. Our work assumes no prior knowledge of optimization
options, and tunes a wide range of techniques, beyond memory
related optimizations. Our system groups optimization options
based on their dependencies provided by the compiler writer.
Our system supports portability across a wide range of appli-
cations.

Iterative compilation aims at selecting the best parameteri-
zation of the optimizations options for a given program or for
a given application domain. It typically affects optimization
flags (switches), parameters (e.g., loop unrolling, tiling), phase

ordering, the heuristic itself, or the hybridation of multiple
heuristics [37]-[43]. Our generic system is built based on
iterative tuning.

Some tuning systems targeting large-scale applications use
outlining to extract hot code sections (kernels) and tune them
off-stage, then plug them back in to the code [44]-[46]. This is
an orthogonal issue and could be combined with our approach.

Other research projects work on empirical optimization of
linear algebra kernels and domain-specific libraries. ATLAS
[14] uses the technique to generate highly optimized BLAS
routines. It uses a near-exhaustive orthogonal search (search
in one dimension at a time by keeping the rest of the
parameters fixed). The order of options being tuned may affect
performance if a following option interacts with a previous
one. Instead, our method searches multiple dimensions within
a group of parameters simultaneously with other independent
groups. Our work tunes faster, which makes it feasible to tune
a wide range of applications.

The OSKI (Optimized Sparse Kernel Interface) [15] library
provides automatically tuned computational kernels for sparse
matrices. FFTW [47] and SPIRAL [48] are domain specific
libraries. FFTW combines the static models with empirical
search to optimize FFTs. SPIRAL generates empirically tuned
Digital Signal Processing (DSP) libraries. Rather than fo-
cussing on one particular domain, our system aims at providing
a general-purpose, customizable, compiler-based approach to
tuning.

Many compiler optimization space navigators use a
feedback-directed approach, which iteratively uses informa-
tion from the current step to decide the next experimental
optimization combinations, until a convergence criteria is
reached. Optimization Space Exploration (OSE) iteratively
constructs new optimization combinations using “unions” of
the ones in the previous iteration [21]. Statistical Selection
(SS) uses orthogonal arrays to compute the main effect of
the optimizations based on a statistical analysis of profile
information, which in turn is used to find the best optimization
[22]. Combined Elimination iteratively identifies the harmful
optimizations and removes them in a batch [23]. All these
approaches are orthogonal to our work and can be incorporated
to navigate the pruned space, further reducing tuning time.

Combined empirical tuning of loop fusion and model-based
tuning of loop tiling, vectorization and parallelization in an
automatic parallelization framework is proposed [16]. Kernels
were used in their evaluation. In contrast to our work, this
system does not address portability and tunes a specific set of
techniques. Our work tunes all techniques empirically. Also,
we performed an extended evaluation using the full suite of
NAS benchmarks.

Loop tiling and unrolling are simultaneously tuned in [49]
using iterative tuning. One of the search algorithms used was
named window search. Initially, the window is the whole 2D
space, after each iteration, a smaller window is defined based
on samples taken. The validity of this algorithm is biased
to architectural attributes of both techniques. Our window-
based tuning is a different concept. Their window navigation



algorithm can replace exhaustive search within windows in our
approach.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an automatic portable window-based tun-
ing system and applied it to a set of research as well as com-
mercial parallelizing compilers. Our tuning system partitions
both program and optimization options into windows. Then, it
tunes each window independently, significantly reducing the
search space of optimization variants and thus tuning time. The
results show that the presented tuning techniques are able to
efficiently navigate the large search space of parallelization
techniques and individual loops on which to apply them.
The combined parallelizer-tuning systems are able to ensure
performance greater or equal to the serial execution in all
programs and outperform the hand-parallelized programs in
one benchmark.

We found parallelizers to be reasonably successful in about
half of the given science-engineering programs. On average
over all compilers, tuning improves performance by 170%
over the untuned applications. Section-level tuning improves
performance by 20% over program-level tuning on average.

We are working on porting the proposed generic system to
tune more compilers, such as OpenMP-to-GPU and OpenMP-
to-MPI translators. We are studying the interactions of adjacent
p-windows, and supporting more windowing strategies. We
will plug-in different space navigation algorithms for the
pruned search space, such as Combined Elimination, and
Parallel Search, further accelerating the tuning process.
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