
60	 This article has been peer-reviewed.� Computing in Science & Engineering

P e r f o r m a n c e
A n a l y s i s

Measuring High-Performance
Computing with Real Applications

Mohamed Sayeed, Hansang Bae, Yili Zheng,
Brian Armstrong, Rudolf Eigenmann, and Faisal Saied
Purdue University

The computer platforms the authors describe here performed both the best and the worst
in a test of selected applications. “Best performance” significantly depended on the problem
being solved, calling into question the value of computer rankings that use simplistic metrics.

B enchmarking can help us quantify
the ability of high-performance com-
puting (HPC) systems to perform
certain, known tasks. An obvious use

of the results is to find a given architecture’s
suitability for a selection of computer applica-
tions. Other equally important uses include the
creation of yardsticks to assess the progress and
requirements of future HPC technology. Such
measurements must be based on real computer
applications and a consistent benchmarking pro-
cess. Although metrics that measure simple pro-
gram kernel behavior have worked well in the
past, they fail to answer questions that deal with
the true state of the art of today’s HPC technol-
ogy and the directions future HPC development
should take. These answers have a direct impact
on competitiveness.

To quantify this belief, we compared kernel
benchmarks with real application benchmarks.
We used high-performance Linpack (HPL) to
represent kernel benchmarks; researchers often

use HPL in highly visible projects, such as those
ranked in the top 500 supercomputers (www.
top500.org). For application benchmarks, we se-
lected four computational codes represented in
the Standard Performance Evaluation Corpo-
ration’s SPEC HPC2002 and SPEC MPI2007
suites (www.spec.org/hpg) and in the US Na-
tional Science Foundation (NSF) HPC system
acquisitions process.

Although we advocate the use of real applica-
tion benchmarks, it’s important to note that ker-
nel benchmarks have an essential role—a small
code fragment that can time a single message ex-
change, for example, is most appropriate for mea-
suring a message-passing function’s latency. We
don’t argue here that small benchmarks are unim-
portant, but that people often use them to answer
the wrong questions. Kernels are appropriate for
measuring system components, but observations
of real application behavior are essential for as-
sessing HPC technology.

Key Benchmarking Questions
Table 1 lists some important questions and indi-
cates the ability of either kernel or full application
benchmarks to provide answers. The first ques-
tion considers the time required to solve today’s
important problems. We might learn that a biol-
ogy application takes a full year to fold a specific

1521-9615/08/$25.00 © 2008 IEEE

Copublished by the IEEE CS and the AIP

Authorized licensed use limited to: Purdue University. Downloaded on April 30, 2009 at 12:01 from IEEE Xplore. Restrictions apply.

July/August 2008 � 61

protein on a present-day HPC platform or that
forecasting the weather with a certain resolution
and accuracy takes 10 hours. For obvious reasons,
kernel benchmarks don’t address such questions:
we can’t infer solution times for real problems
from kernel execution times. In contrast, real ap-
plication benchmarks with data sets that represent
actual problems give direct answers.

The second question deals with relative per-
formance. Although both types of benchmark
provide answers, a system’s overall ranking can
hinge on the type of application involved. The
same machine can perform the best and the
worst, so relying on simple numbers not only pro-
vides inaccurate answers, it can lead to the wrong
conclusions about machine suitability and HPC
technology in general.

The strength of specialized kernel benchmarks
is their ability to measure individual machine fea-
tures by focusing on a particular system aspect.
However, the results don’t answer the question of
relative component importance—breaking down
a real application’s execution time into computa-
tion, communication, and I/O, for example, shows
each component’s true relative importance. We
can’t get this type of information by combining
each component’s individual kernel benchmarks.
However, kernel metrics can answer the question
of what percentage of peak performance the float-
ing-point operations can achieve: such metrics
are idealized bounds under a given code pattern.
But these results don’t represent the percentage of
peak performance a real application can achieve.

The sixth question deals with an important
group of issues that benchmarking and perfor-
mance evaluation must address: the characteristics
of computational applications. Kernel benchmarks
can’t help here—they’re typically created by iden-
tifying real application characteristics and then
focusing on one of them.

Benchmarking can help predict the applica-
tion behavior of data sets and machines that are
much larger than what’s feasible today. As the
last question illustrates, the value of kernel ver-
sus real application benchmarks for such predic-
tion is still controversial.

Challenges of Measuring
Performance with Real Applications
Communities ranging from HPC customers to
computer manufacturers to research funding
agencies to scientific teams have increasingly
called for better yardsticks. Let’s look at the
stark contrast between this need and conven-
tional wisdom.

Simple Benchmarks Are Overly Easy to Run
One of the greatest challenges of evaluating per-
formance with real applications is the simplicity
with which we can run kernel benchmarks. With
the investment of minutes to a few hours, we can
generate a benchmark report that seemingly puts
our machine “on the map.” The simplicity of ker-
nel benchmarks can overcome portability issues
(no changes to the source code are necessary to
port it to a new machine) as well as software envi-
ronment issues (the small code is unlikely to en-
gage unproven compiler optimizations or to break
programming tools in a beta release). This sim-
plicity might even overcome hardware issues—the
kernel is unlikely to approach numerical instabil-
ity, to which a new processor’s floating-point unit
might be susceptible.

However, these are the very features that we
want in a true HPC evaluation. We don’t want a
machine to show up in the “Best 100” if it takes
major code restructuring to port a real application,
if porting the application requires major addition-
al debugging, if the tools and compilers aren’t yet
mature, or if the hardware is still unstable.

Specialized benchmarks exist for a large num-
ber of metrics, including message counting in
message-passing interface (MPI) applications,
measuring the memory bandwidth of symmetric
multiprocessor (SMP) platforms, gauging fork-
join overheads in OpenMP implementations,
studying scheduling characteristics,1 and many
more. The SPEC benchmarking organization
(www.spec.org) alone distributes 12 major bench-

Table 1. Comparison of kernel versus full application metrics.*

Benchmarking question Ability to answer

Kernels Full
applications

1. �What time is required to solve
important computational problems on
today’s high-performance computing
platforms?

n/a +

2. �What’s the overall platform
performance?

– +

3. How do system components perform? + –

4. �What’s the importance of system
components relative to each other?

n/a +

5. �What’s the importance of system
components relative to upper bounds?

– +

6. �What are the characteristics of
important computational problems?

– +

7. �What are the characteristics of
important future problems?

– +

* “+” is a good answer, “–” is a limited answer, and “n/a” is no answer.

Authorized licensed use limited to: Purdue University. Downloaded on April 30, 2009 at 12:01 from IEEE Xplore. Restrictions apply.

62� Computing in Science & Engineering

mark suites. Diverse suites play an essential role
because they can help us understand a specific
aspect of a system in depth, but when it comes
to understanding the behavior of a system as a
whole, these detailed measures don’t suffice. Even
if a specific benchmark could measure each and
every aspect of a system, no formula exists to help
us combine the different numbers into an overall
system metric.

We Can’t Abstract
Realistic Benchmarks from Real Applications
An inviting approach to benchmarking with real
applications is to extract important excerpts from
real codes, with the aim of preserving the relevant
features and omitting the unnecessary ones. Un-
fortunately, this means we’re making decisions
about an application’s less important parts that
might be incorrect. For example, we might find
a loop that executes 100 computationally near-
identical iterations and reduce it to just a few,
but this abstraction might render the code use-

less for evaluating adaptive compiler techniques:
repetitive behavior can be crucial for an adaptive
algorithm to converge on the best optimization
technique. Similarly, data downsizing techniques2
might ensure that a smaller problem’s cache be-
havior remains the same, but the code would be-
come useless for determining the real problem’s
memory footprint.

The difficulty of defining scaled-down bench-
marks is evident in the many criteria for bench-
mark selection suggested in past efforts: codes
should contain a balance of various degrees of
parallelism, be scalable, be simple yet reflect real-
world problems, use a large memory footprint and
a large working set, be executable on a large num-
ber of processors, exhibit a variety of cache-hit ra-
tios, and be amenable to a variety of programming
models for shared-memory, multicore, and cluster
architectures. Last but not least, benchmark codes
should represent a balanced set of computer ap-
plications from diverse fields.

Obviously, nothing could satisfy all of these
demands—some of them are directly contradic-

tory. Furthermore, selecting yardsticks by such
criteria would dismiss the fact that we want to
learn about these properties from real applica-
tions. We want to learn how scalable a real ap-
plication is, for example, not just select a scalable
one. Similarly, if an application’s real data sets
don’t have large memory footprints, then our
evaluation has produced an important result: in-
flating input data parameters to fill some memory
footprint benchmark selection criterion wouldn’t
be meaningful.

Today’s Real Applications
Might Not Be Tomorrow’s
Large, real applications tend to contain legacy
code with programming practices that don’t re-
flect tomorrow’s software engineering principles
and algorithms.

This is perhaps the strongest argument against
using today’s real applications to determine future
HPC needs, but when we ask what future applica-
tions should include, the answer isn’t forthcoming.
Should we use specific selection criteria? Are we
sure that the best of today’s algorithms and soft-
ware engineering principles will find themselves
in tomorrow’s applications? If we choose a certain
path and miss, we risk losing on two fronts: aban-
doning today’s established practices and erring in
what tomorrow’s technology will be. Neverthe-
less, the best predictor of tomorrow could very
well be today’s established practice.

Benchmarking Isn’t Eligible
for Research Funding
Performance evaluation and benchmarking proj-
ects are long-term efforts, so data must be gath-
ered and kept for many years. (The 15-year-old
perfect-benchmarks@csrd.uiuc.edu mailing list
still receives occasional queries.) Unfortunately,
this type of task doesn’t easily include the advanced
performance-modeling topics that interest scien-
tists, so most efforts that focus on benchmarking
infrastructure and its long-term support lack con-
tinuity in funding from science sponsors.

Programs that create such services at fund-
ing agencies could eventually appear—perhaps
this article will motivate future initiatives. An
alternative is a combined academic/industrial ef-
fort, such as SPEC’s High-Performance Group
(HPG), in which industrial benchmarking needs
meet academic interests, resulting in suites of
real, HPC applications.

Maintaining Benchmarking Efforts Is Costly
A performance evaluation and benchmarking ef-

Large, real applications tend to contain

legacy code with programming practices that

don’t reflect tomorrow’s software engineering

principles and algorithms.

Authorized licensed use limited to: Purdue University. Downloaded on April 30, 2009 at 12:01 from IEEE Xplore. Restrictions apply.

July/August 2008 � 63

fort entails collecting test applications, ensuring
portability, developing self-validation procedures,
defining benchmark workloads, creating bench-
mark run and result submission rules, organizing
result review committees, disseminating the suite,
maintaining result publication sites, and even pro-
tecting evaluation metrics from misuse. Dealing
with real, large-scale applications further neces-
sitates assisting benchmark users and maintain-
ing the involvement of domain experts in their
respective application areas.

The high cost of these tasks is obvious. Many
benchmarking efforts cover their costs through
initial research grants or volunteer efforts, but
this support typically pays for the first round of
benchmark definitions, not subsequent steps or
publication sites. To date, SPEC is the only orga-
nization that maintains full, continuously updated
benchmarking efforts. Its funding comes primar-
ily from industrial membership and a comparably
small fee for the actual benchmark suites.

Proprietary Application Benchmarks
Can’t Serve as Open Yardsticks
So, should realistic benchmarks match the ex-
act applications that will run on the target sys-
tem of interest? Clearly, prospective customers
think their own applications would be the best
choice for testing a system’s desired functional-
ity. It might serve the customer best if multiple
vendors ran applications in a way that allowed
fair comparison, but because most applications
are proprietary, neither the scientific commu-
nity nor the public can verify or scrutinize the
generated performance claims. Hence, the value
of proprietary benchmarks is limited to simple
metrics.

Public benchmarks might be of higher value.
Fair benchmark results can be costly to generate,
and vendors are under pressure to produce good
results in a very short period, often competing
internally for machine resources. Unless cus-
tomers can closely supervise the benchmarking
process with significant expertise, they might
not get results that they can compare fairly.
Without any deceptive intentions on the vendor
side, the lack of a clear evaluation methodol-
ogy often allows shortcuts and “optimizations”
that can differ significantly among evaluation
groups. In contrast, even though established,
public, full-application benchmark results might
not have computational patterns identical to a
customer’s codes, the performance numbers’
consistency and availability might outweigh this
drawback.

Meeting the Challenge:
Toward a Benchmarking Methodology
An advanced HPC benchmarking methodology

creates performance yardsticks based on real
applications and openly shared data sets,
defines metrics that indicate overall prob-
lem solution time as well as the performance
of important kernels that constitute the
application,
defines rules for running and reporting bench-
marks, so that comparisons are fair and any rel-
evant information is fully disclosed, and
enables the creation of a repository that maintains
benchmarking reports over a long time period.

Rules are only useful if they’re enforceable,
which emphasizes the need for a benchmark re-
view process. The goal here is to facilitate ob-
jective efforts rather than self-evaluations by
machine vendors and HPC platform owners.
Full disclosure is also crucial: the applications,
their data sets, the benchmarking process, and
the software and hardware configuration with
which the results were obtained must all be open
to inspection.

An open repository of fully disclosed bench-
mark results is essential to fair, consistent HPC
evaluation. Such an effort benefits prospective
customers of HPC systems as well as researchers
attempting to advance HPC technology. It’s even
more important in the acquisition and evaluation
of HPC systems with public funds.

Benchmarking Efforts
with Real Applications
Performance evaluation efforts with real applica-
tions began to emerge in 1988 with the Perfect
Benchmarks.3,4 This set of scientific and engi-
neering applications was intended to replace ker-
nel-type benchmarks and the commonly used
peak-performance numbers, and represented a
significant step in the direction of application-
level benchmarking. Although they continue to
circulate in the research community, the origi-
nal Perfect Benchmarks are small compared to
today’s real applications (the largest included
some 20,000 lines of Fortran 77), and their
data sets execute in the order of seconds on today’s
machines. No results Web site is available for the
Perfect Benchmarks.

Similarly, the ParkBench (for PARallel Kernels
and BENCHmarks)5 effort emerged in 1992 with
some research funding but didn’t update its initial
suites in response to newer generations of HPC

•

•

•

•

Authorized licensed use limited to: Purdue University. Downloaded on April 30, 2009 at 12:01 from IEEE Xplore. Restrictions apply.

64� Computing in Science & Engineering

systems. The effort was very ambitious in its goal
of delivering a set of benchmarks that range from
kernels to full applications. The largest, full-
application suite was never created, though.

SPEC HPG
Like the Perfect Benchmarks, SPEC also debuted
in 1988. Although it’s largely vendor based, the
organization includes a range of academic af-
filiates. Initially, SPEC focused on benchmarking
uniprocessor machines and, in this area, became
the leader in providing performance numbers to
workstation customers. SPEC suites are also in-
creasingly used by the research community to
evaluate the performance of new architecture
concepts and software prototypes. Today, SPEC
offers a large number of benchmarks that evalu-
ate workstations, graphics capabilities, and high-
performance systems. Most notably for HPC
evaluation, the SPEC HPG formed in 1994 out
of an initiative to merge the Perfect Benchmarks
effort’s expertise in HPC evaluation with SPEC’s
capability to sustain such efforts long term. Since
its foundation, this group has produced several
HPC benchmarks, including the HPC suite,6–8
the OMP suite (for OpenMP applications),9 and
the MPI suite.

SPEC’s HPG suites are based on widely used
computational applications that can be openly
distributed to the community. The codes are
implemented with the MPI and OpenMP stan-
dards for parallel processing, and SPEC provides
a result submission and review process, a re-
pository at www.spec.org/hpg, and a continuous
benchmark update process. Intended consumers
include end users, system vendors, software ven-
dors, and researchers.

Other HPC Benchmarking Efforts
Other attempts to provide HPC benchmarks have
emerged over the past decade as well. Notable
examples include the Euroben effort in Europe
(www.euroben.nl) and NASA’s Parallel Bench-
marks (NPB).10

The US Department of Defense’s High Perfor-
mance Computing Modernization Program (HPC-
MP; www.hpcmo.hpc.mil) developed its own suites
that include synthetic benchmarks and real appli-
cations to support its yearly acquisition activities.
A related effort is the benchmarking project that’s
part of Darpa’s High-Productivity Computing
Systems (HPCS) program (www.highproductivity.
org). Currently, this effort has suites of kernel
benchmarks and several synthetic compact applica-
tions. Another important effort is the benchmark-
ing process defined by the NSF for its acquisition
of a national HPC system infrastructure. The NSF
benchmarks include both a set of kernel bench-
marks and real applications for system evaluation.
However, neither the HPCS nor the NSF bench-
marking efforts have an associated project to main-
tain a result repository that the public can view.

Metrics for HPC Evaluation
The general consensus in the benchmarking com-
munity is that overall performance must be evalu-
ated via wall-clock time measurements, but an
open and often controversial issue is how to com-
bine measurements from multiple benchmarks into
one final number. SPEC’s approach is to leave the
decision up to the benchmark report reader—that
is, each code is reported separately. Other suites,
such as SPEC CPU, SPEC OMP, and SPEC MPI,
report the geometric mean of individual program
performance results. The NSF benchmarking ef-
fort includes both kernel and applications metrics,
which are reported independently. Kernel bench-
marks evaluate a wide variety of system compo-
nents, so the metrics also vary widely, and to our
knowledge, no current benchmarking effort can
relate kernel and application benchmarks by, for
example, measuring important constituent kernels
as part of a real application benchmark run.

An increasingly important class of metrics
characterizes the program properties of computa-
tional applications (examples include the use and
frequency of algorithms, program patterns, and
compiler analysis results). Understanding such
benchmarking metrics is key to improving the
scalability of computational applications.

Tools for Gathering Metrics
Obtaining overall timing metrics is relatively

Figure 1. Top application performers. This aggregate view combines
the SPEC HPC2002 suite’s results into an overall rank, with the bars
subdivided into each individual benchmark application’s contributions
to the rank. The TAP lists also show rankings based on other
application suites.

Authorized licensed use limited to: Purdue University. Downloaded on April 30, 2009 at 12:01 from IEEE Xplore. Restrictions apply.

July/August 2008 � 65

straightforward, but tools for gathering detailed
execution characteristics are often platform-spe-
cific, so it can be difficult to obtain the metrics
of interest on a given platform. It’s even more
difficult to conduct comparative evaluations that
gather a certain metric across several platforms.
Among the tools we’ve used in our projects are
mpiP, hpmcount, and strace:

mpiP is a lightweight profiling library for MPI
applications that reports the percentage of time
spent in the MPI. It also includes the times each
MPI function uses.
IBM’s Hardware Performance Monitor suite in-
cludes a simplified interface, hpmcount, which
summarizes data from selected hardware coun-
ters and computes some useful derived metrics,
such as instructions and flops per cycle.
We can measure I/O behavior (by recording
I/O system call activities) with the strace com-
mand; from this output, we can extract statis-
tics for file I/O using a script.

These tools are but a small sample of a large
set of instruments available on myriad platforms
today, thus an important goal is uniformity.
Benchmarkers need tools and interfaces to gather
relevant performance data consistently across the
range of available platforms. Ideally, these tools
won’t just report volumes of performance coun-
ter results—they’ll also abstract these volumes,
thereby creating the end metrics of interest.

•

•

•

Ranking HPC Systems
Benchmark reports for real application suites,
such as the SPEC HPC codes, can help us create
more realistic rankings of HPC platforms (www.
purdue.edu/TAPlist). Figure 1 shows the top ap-
plication performers (TAP) list as of January 2006;
this list defines an aggregate metric with which we
can combine the results of our three benchmark
applications into an overall rank. The metric
weights individual application performance results
according to their average runtime across different
platforms. The list also allows a single benchmark
to be used for ranking. The TAP list contains links
to the original SPEC benchmark reports.

Performance Results
We used four application benchmarks and tested
them on three different parallel architectures
to evaluate performance; we discuss the perfor-
mance results in this section in terms of the key
benchmarking questions discussed earlier. Table
2 gives a brief description of the four applications
along with the problem being solved. The codes
GAMESS and WRF are members of the SPEC
HPC and NSF benchmark suites (see www.nsf.
gov/pubs/2006/nsf0605/nsf0605.jsp); WRF and
MILC are also part of SPEC MPI2007. Here,
we’ve measured the SPEC HPC versions of
GAMESS and WRF and the MILC version of the
NSF benchmarks; the Seismic application is part
of the SPEC HPC suite. Where appropriate for
comparison, we’ve shown results obtained from

Table 2. Wall-clock execution times and problems solved by application benchmarks on the IBM P690 platform,
using 32 processors.

Application Execution time Problem description for a medium data set

Seismic (SPECseis) 625 sec. Seismic is a suite of codes typical of the seismic processing applications used
to find oil and gas. The data set processes seismic traces of 512 × 48 × 128
× 128. (Samples per trace × traces per group × groups per line × number of
lines, where a trace corresponds to a sensor that has a sampling frequency; the
sensors are strung out on multiple cables behind a ship.) The total data set size
in Phase 1 of SPECseis is 1.5 Gbytes and reduces to 70 Mbytes in Phase 2.

GAMESS (SPECchem) 3,849 sec. GAMESS is a general ab initio quantum chemistry package. The data set
computes self-consistent field wavefunctions (RHF type) for thymine (C5H7N3O
– 16 atoms), one of the bases found in nucleic acids.

WRF (SPECenv) 742 sec. WRF is a weather research and forecasting modeling system for the mesoscale
(meters to thousands of kilometers). The data set simulates the weather over
the continental US for a 24-hour period starting from Saturday, 3 November
2001, at 12:00 a.m. The grid is 260 × 164 × 35 with a 22-km resolution.

MILC 1,497 sec. MILC is used for large-scale numerical simulation of quantum chromodynamics
to calculate the masses and other basic properties of strongly interacting
particles (quarks and gluons). It simulates quantum chromodynamics with
improved staggered quarks of two masses and performs a computation over a
4D lattice with 32 points, involving approximately 34 million variables for the
integral evaluation.

Authorized licensed use limited to: Purdue University. Downloaded on April 30, 2009 at 12:01 from IEEE Xplore. Restrictions apply.

66� Computing in Science & Engineering

the HPL kernel benchmarks (the HPL codes are
also part of the NSF benchmark suite).

Overall Performance
Absolute application performance is the total run-
time for solving an overall application problem. The
machines we used included an IBM P690 (www.
ccs.ornl.gov/Cheetah/Cheetah.html), an SGI
Altix (www.ccs.ornl.gov/Ram/Ram.html), and
an Intel Xeon cluster (www.itap.purdue.edu/rcac/
news/news.cfm?NewsID=178). The runtimes
for these medium data sets on a 32-processor
IBM P690 platform ranged from approximately

10 minutes (for Seismic) to more than an hour
(for GAMESS).

Figure 2 shows the relative performance of the
individual benchmark applications on the three
platforms as well as the HPL benchmark’s per-
formance. We took measurements on up to 64
processors, except for Seismic (up to 32; the 64-
processor runs didn’t validate).

The four applications had different rankings on
the platforms. In terms of execution time on the
highest measured processor count, each platform
performed both the best and the worst across the
different benchmarks. In terms of speedup be-

Sc
al

ab
ili

ty

Processors

8

7

6

5

4

3

2

1

Sc
al

ab
ili

ty

Processors

12

10

8

6

4

2
0 8 16 24 34 40 48 56 64 72

Sc
al

ab
ili

ty

Processors

7

6

5

4

3

2

1

Sc
al

ab
ili

ty

Processors

12

10

8

6

4

2

0 8 16 24 34 40 48 56 64 72

Sc
al

ab
ili

ty

Processors

2.5

2.0

1.5

1.0

0.5

0 4 8 12 16 20 24 28 32 36

Intel Xeon
SGI Altix
IBM P690

0 8 16 24 34 40 48 56 64 72

0 8 16 24 34 40 48 56 64 72

Figure 2. Relative performance of application benchmarks on three platforms. All performance numbers are relative to the
execution speed on an Intel Xeon with four processors; we used the medium data set in all executions. For comparison, we
show the execution times of the same machines using the HPL kernel benchmarks (with N = 9,900). Note that every machine
performed the best on one application and the worst on another. Hence, the relative ranking of these systems critically
depends on the problem being solved.

Authorized licensed use limited to: Purdue University. Downloaded on April 30, 2009 at 12:01 from IEEE Xplore. Restrictions apply.

July/August 2008 � 67

havior, the IBM P690 platform scaled the best
in Seismic, WRF, and MILC, but the worst in
GAMESS. The good scaling behavior on MILC
was consistent with a relatively high computation-
to-communication ratio, which Figure 3 shows.
On both the Intel Xeon and the SGI Altix, Seismic
scaled only to 16 processors and WRF only to 32.
We observed superlinear behavior for GAMESS
on SGI Altix and Intel Xeon up to 32 processors
and for MILC on 32 and 64 processors. The su-
perlinear behavior might be due to data fitting
nicely in L2 cache; we assumed ideal behavior for
the four-processor case, as this was the smallest
processor count the medium data sets could run
on due to memory limitations.

The kernel benchmark results (HPL with N =
9,900) were most similar to those of WRF. Evi-
dently, because the different applications’ perfor-
mance behavior varied significantly, the kernel
benchmark reflected only a small part of the ap-
plication spectrum.

Component Performance
As we mentioned earlier, system component mea
surements give insight into the behavior of individual

machine features: their relative performance shows
a feature’s contribution to a computational prob-
lem’s overall solution. Furthermore, component
performance relative to some upper bound shows
us how efficiently the machine feature is exploited
compared to theoretical limits. We used the per-
formance analysis tools mpiP, hpmcount, and strace
to measure specific application component charac-
teristics such as communication, computation, and
I/O. Figure 3 shows the time breakdown.

Communication characteristics. We measured the
communication component overhead for all
the application benchmark codes and the HPL
benchmark with constant and scaled problem
sizes, and found the communication cost to be
5 to 40 percent of the overall execution time.
Seismic did the least amount of communication,
followed by GAMESS, MILC, and WRF. We
measured all four phases of Seismic separately
and later aggregated them; ultimately, Seismic
showed significant load imbalance. In GAMESS,
a single processor communicated 100 percent of
the time. WRF, MILC, and HPL were the most
balanced, but the difference between the least

%
 o

f e
ac

h
co

m
p

on
en

t

MPI rank/application

Computation Communication I/O
100

80

60

40

20

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SEISMIC WRF GAMESS MILC HPL (N = 9,900) HPL (N = 39,600)

Figure 3. Components. When we look closer at the execution time breakdown of the benchmarks into computation,
communication, and I/O, we see different application characteristics such as if the application is compute, communication,
or I/O bound.

Authorized licensed use limited to: Purdue University. Downloaded on April 30, 2009 at 12:01 from IEEE Xplore. Restrictions apply.

68� Computing in Science & Engineering

and most communicating processors was still 50
percent or more.

HPL communication depended on problem
size and exhibited locality characteristics: with an
increasing data set size, communication reduced
significantly. This feature of the kernel bench-
mark led to generally good scaling behavior on
very large machines, but it also contributed to the
difference in rank lists of application versus kernel
benchmarks. We observed a significant difference
in communication cost overhead across architec-
tures (IBM P690 and Intel Xeon Linux cluster) for
the MILC and WRF benchmarks because they’re
communication intensive. The IBM P690 system
provided higher communication bandwidth than
the Intel Xeon system.

I/O characteristics. We measured I/O volume on
all the benchmark codes and found that MILC
and HPL didn’t perform any I/O, whereas in
both WRF and GAMESS, a single processor
performed all the I/O. The I/O volumes of these
codes (four Seismic phases measured separately,
WRF, and GAMESS) ranged from 61 Mbytes to
5.5 Gbytes. The fraction of execution time taken
by the I/O was small in both GAMESS and WRF
but significant in Seismic, especially in phase 1.
The I/O read and write volumes differed, yet they
took the same amount of time due to differences
in read and write speed.

Memory footprints. Figure 4 shows the bench
mark’s memory footprints as a function of the
number of processors. Again, we split Seismic into
its four execution phases, with the sizes ranging
from 20 Mbytes per processor in Seismic’s phase 1

to 1 Gbyte per processor in MILC (due to the large
footprint, MILC couldn’t run on less than four
processors). MILC, WRF, and Seismic’s phases 3
and 4 exhibited the commonly expected behavior:
memory footprint decreased steadily with increas-
ing processor numbers. But in Seismic’s phases 1
and 2 and in GAMESS, the memory footprint was
independent of the number of processors. This
finding is important because it refutes the com-
mon assumption that larger systems will naturally
accommodate larger data sets. This assumption is
the basis for a benchmark methodology that lets
data sets “scale” and thus reduces communica-
tion, leading to seemingly improved performance
numbers on large systems. Our results show that
this path to scalability might not be correct.

Application Characteristics
We can characterize computational applica-
tions from many diverse angles—the physi-
cal problem being solved, the algorithms used,
computer language and source code properties,
compiler-applied optimization methods, gener-
ated instruction characteristics, and upper limit
analyses, to name a few. A systematic methodol-
ogy of application characterization11 could guide
the process of answering the relevant questions
in this area. Table 3 shows a small set of such
data, providing insight into the core algorithms
and programming languages used to compose
our test applications.

As we mentioned earlier, understanding the
characteristics of today’s applications could help us
anticipate the behavior of tomorrow’s applications.
Most performance prediction techniques are based
on application signatures and machine profiles,
combined via convolution methods. In one ap-
proach,12 the authors defined synthetic kernels that
exhibit interesting code and machine properties
and then extrapolated these kernels’ measured be-
havior to larger data set sizes. Another approach13–

15 measured an application’s key characteristics on
a current platform and then forecasted the appli-
cation behavior on scaled data and machine sizes,
using predictive formulas. The authors derived the
formulas with a least-squares fitting approach15 or
via the compiler from the source code, expressing
the way input data affects the volume of computa-
tion, communication, and I/O.

A good benchmarking methodology can
save a tremendous amount of resourc-
es in terms of human effort, machine
cycles, and cost. Such a methodology

M
by

te
s

1,000

100

10

Number of processors
1 2 4 8 16

WRF

Seismic (phase 4)

Seismic (phase 1) Seismic (phase 2)

Seismic (phase 3) GAMESS HPL

Figure 4. Benchmark memory footprints. The total memory size per
processor for an Intel Xeon cluster varies widely depending on the
benchmark used.

Authorized licensed use limited to: Purdue University. Downloaded on April 30, 2009 at 12:01 from IEEE Xplore. Restrictions apply.

July/August 2008 � 69

must consider the relevance and openness of the
chosen codes, well-defined rules for executing and
reporting the benchmarks, a review process to
enforce the rules, and a public repository for the
obtained information. For the methodology to
be feasible, it must also be supported by adequate
tools that enable the user to consistently execute
the benchmarks and gather the requisite metrics.

At the very least, reliable benchmarking results
can help people make decisions about HPC acqui-
sitions and assist scientists and engineers in sys-
tem advances. By saving resources and enabling
balanced designs and configurations, realistic
benchmarking ultimately leads to increased com-
petitiveness in both industry and academia.�

Acknowledgments
This work was supported, in part, by the US Nation-
al Science Foundation under grants 9974976-EIA,
0103582-EIA, and 0429535-CCF. The machines used
in our experiments were made available by Purdue
University’s Rosen Center for Advanced Computing
and the Oak Ridge National Laboratory.

References
A.T. Wong et al., “Esp: A System Utilization Benchmark,”
Proc. IEEE/ACM SC2000 Conf., IEEE CS Press, 2000; http://
citeseer.ist.psu.edu/wong00esp.html.

S.C. Woo et al., “The Splash2 Programs: Characterization
and Methodological Considerations,” Proc. 22nd Int’l Symp.
Computer Architecture, ACM Press, 1995, pp. 24–36.

M. Berry et al., “The Perfect Club Benchmarks: Effective
Performance Evaluation of Supercomputers,” Int’l J. Super-
computer Applications, vol. 3, no. 3, 1989, pp. 5–40.

M. Berry, G. Cybenko, and J. Larson, “Scientific Benchmark
Characterizations,” Parallel Computing, vol. 17, Dec. 1991,
pp. 1173–1194.

R.W. Hockney and M. Berry, “Parkbench Report: Public In-
ternational Benchmarking for Parallel Computers,” Scientific
Programming, vol. 3, no. 2, 1994, pp. 101–146.

R. Eigenmann and S. Hassanzadeh, “Benchmarking with
Real Industrial Applications: The SPEC High-Performance
Group,” IEEE Computational Science & Eng., vol. 3, no. 1,
1996, pp. 18–23.

R. Eigenmann et al., “Performance Evaluation and Bench-
marking with Realistic Applications,” SPEC HPG Benchmarks:

1.

2.

3.

4.

5.

6.

7.

Performance Evaluation with Large-Scale Science and Engineer-
ing Applications, MIT Press, 2001, pp. 40–48.

M.S. Mueller et al., “SPEC HPG Benchmarks for High
Performance Systems,” Int’l J. High-Performance Computing
and Networking, vol. 2, no. 1, 2004; http://citeseer.ist.psu.
edu/672999.html.

V. Aslot et al., “Specomp: A New Benchmark Suite for
Measuring Parallel Computer Performance,” Proc. Workshop
OpenMP Applications and Tools, LNCS 2104, Springer-Verlag,
2001, pp. 1–10.

D. Bailey et al., The NAS Parallel Benchmarks 2.0, tech. report
NAS-95-020, NASA Ames Research Center, Dec. 1995.

B. Armstrong and R. Eigenmann, “Benchmarking and Per-
formance Evaluation with Realistic Applications,” A Method-
ology for Scientific Benchmarking with Large-Scale Applications,
MIT Press, 2001, pp. 109–127.

D.H. Bailey and A. Snavely, “Performance Modeling: Un-
derstanding the Past and Predicting the Future,” Proc. 11th
Int’l Euro-Par Conf., LNCS 3648, Springer-Verlag, 2005, pp.
761–770.

B. Armstrong and R. Eigenmann, “Performance Forecasting:
A Methodology for Characterizing Large Computational
Applications,” Proc. Int’l Conf. Parallel Processing, IEEE Press,
1998, pp. 518–526.

L. Carrington, A. Snavely, and N. Wolter, “A Performance
Prediction Framework for Scientific Applications,” Future
Generation Computer Systems, vol. 22, no. 3, 2006, pp.
336–346.

M. Mahinthakumar et al., “Performance Evaluation and
Modeling of a Parallel Astrophysics Application,” Proc. High
Performance Computing Symp., Soc. for Computer Simulation
Int’l, 2004; www.scs.org/docInfo.cfm?get=1681.

Mohamed Sayeed is a research scientist in the Com-
puting Research Institute and Rosen Center for Ad-
vanced Computing at Purdue University. His research
interests include numerical modeling, high-per-
formance computing for scientific computing, and
performance modeling. Sayeed has a PhD in civil
engineering from North Carolina State University.
Contact him at msayeed@purdue.edu.

Hansang Bae is working toward a PhD in electrical
and computer engineering at Purdue University. His
research interests include optimizing compilers and
performance analysis of high-performance appli-
cations and platforms. Contact him at baeh@ecn.
purdue.edu.

8.

9.

10.

11.

12.

13.

14.

15.

Table 3. Benchmark composition in terms of number of files, subroutines, lines, programming languages,
and core algorithms.

Seismic WRF GAMESS MILC

Files 59 313 61 152

Subroutines 354 1139 835 382

Lines 24,000 168,000 122,000 20,000

Languages 56% Fortran, 44% C 85% Fortran, 15% C 99.5% Fortran, 0.5% C 100% C

Algorithms 3D FFT, finite difference,
Toepliz solver, Kirchhoff
integral

CFD (Eulerian equation
solver), split-explicit
method

Eigenvalue solver, dense
matrix

Conjugate gradient,
matrix multiply

Authorized licensed use limited to: Purdue University. Downloaded on April 30, 2009 at 12:01 from IEEE Xplore. Restrictions apply.

70� Computing in Science & Engineering

Yili Zheng is a PhD candidate
in the School of Electrical and
Computer Engineering at Purdue
University. His research interests
include cross-layer optimizations
and end-to-end solutions for
computation-intensive problems
such as those in biomedical,
financial, and energy applica-
tions. Contact him at yzheng@
purdue.edu.

Brian Armstrong is a PhD can-
didate in Purdue University’s
computational science and engi-
neering program. His research in-
terests are performance analysis
of parallel and distributed ap-
plications and automatic par-
allelization of industrial-grade
applications. Contact him at
barmstro@purdue.edu.

Rudolf Eigenmann is a profes-
sor in the School of Electrical
and Computer Engineering and
interim director of the Comput-
ing Research Institute at Purdue
University. His research interests
include compiler optimization,
programming methodologies and
tools, performance evaluation for
high-performance computers and
applications, and Internet shar-
ing technology. Eigenmann has a
PhD in electrical engineering and
computer science from ETH Zur-
ich. Contact him at eigenman@
purdue.edu.

Faisal Saied is a senior research
scientist at Purdue University’s
Computing Research Institute
and Rosen Center for Advanced
Computing. His research interests
include numerical analysis, paral-
lel numerical algorithms, numeri-
cal methods for the Schrödinger
equation, large-scale eigenvalue
problems, and performance
engineering for large-scale ap-
plications. Saied has a PhD in
computer science from Yale Uni-
versity. Contact him at fsaied@
purdue.edu.

EXECUTIVE COMMITTEE

President: Rangachar Kasturi*
President-Elect: Susan K. (Kathy) Land,

CSDP;* Past President: Michael R.
Williams;* VP, Electronic Products & Ser-
vices: George V. Cybenko (1ST VP);* Sec-
retary: Michel Israel (2ND VP);* VP, Chap-
ters Activities: Antonio Doria;† VP,
Educational Activities: Stephen B. Seid-
man;† VP, Publications: Sorel Reisman;†
VP, Standards Activities: John W. Walz;†
VP, Technical & Conference Activities:
Joseph R. Bumblis;† Treasurer: Donald F.
Shafer;* 2008–2009 IEEE Division V
Director: Deborah M. Cooper;†
2007–2008 IEEE Division VIII Director:
Thomas W. Williams;† 2008 IEEE Division
VIII Director-Elect: Stephen L. Diamond;†
Computer Editor in Chief: Carl K. Chang†

* voting member of the Board of Governors
† nonvoting member of the Board of Governors

BOARD OF GOVERNORS

Term Expiring 2008: Richard H. Eckhouse;
James D. Isaak; James Moore, CSDP; Gary
McGraw; Robert H. Sloan; Makoto Takiza-
wa; Stephanie M. White

Term Expiring 2009: Van L. Eden; Robert
Dupuis; Frank E. Ferrante; Roger U. Fujii;
Ann Q. Gates, CSDP; Juan E. Gilbert; Don
F. Shafer

Term Expiring 2010: André Ivanov; Phillip
A. Laplante; Itaru Mimura; Jon G. Rokne;
Christina M. Schober; Ann E.K. Sobel; Jef-
frey M. Voas

Next Board Meeting:
18 Nov. 2008, New Brunswick,
NJ, USA

EXECUTIVE STAFF

Executive Director: Angela R. Burgess; Direc-
tor, Finance & Accounting: John Miller;
Director, Governance, & Associate Execu-
tive Director: Anne Marie Kelly; Director,
Information Technology & Services: Neal
Linson; Director, Membership Develop-
ment: Violet S. Doan; Director, Products
& Services: Evan Butterfield; Director,
Sales & Markting: Dick Price

COMPUTER SOCIETY OFFICES
Washington Office. 1828 L St. N.W., Suite

1202, Washington, D.C. 20036-5104
Phone: +1 202 371 0101
Fax: +1 202 728 9614
Email: hq.ofc@computer.org

Los Alamitos Office. 10662 Los Vaqueros
Circle, Los Alamitos, CA 90720-1314
Phone: +1 714 821 8380
Email: help@computer.org
Membership & Publication Orders:
Phone: +1 800 272 6657
Fax: +1 714 821 4641
Email: help@computer.org

Asia/Pacific Office. Watanabe Building, 1-4-2
Minami-Aoyama, Minato-ku,
Tokyo 107-0062, Japan
Phone: +81 3 3408 3118
Fax: +81 3 3408 3553
Email: tokyo.ofc@computer.org

IEEE OFFICERS

President: Lewis M. Terman; President-
Elect: John R. Vig; Past President: Leah
H. Jamieson; Executive Director & COO:
Jeffry W. Raynes; Secretary: Barry L.
Shoop; Treasurer: David G. Green; VP,
Educational Activities: Evangelia Micheli-
Tzanakou; VP, Publication Services &
Products: John Baillieul; VP, Membership
& Geographic Activities: Joseph V. Lillie;
VP, Standards Association Board of
Governors: George W. Arnold; VP,
Technical Activities: J. Roberto B.
deMarca; IEEE Division V Director:
Deborah M. Cooper; IEEE Division VIII
Director: Thomas W. Williams; President,
IEEE-USA: Russell J. Lefevre

PURPOSE: The IEEE Computer Society is the world’s largest association of computing
professionals and is the leading provider of technical information in the field.

MEMBERSHIP: Members receive the monthly magazine Computer, discounts, and
opportunities to serve (all activities are led by volunteer members). Membership is
open to all IEEE members, affiliate society members, and others interested in the
computer field.

COMPUTER SOCIETY WEB SITE: www.computer.org
OMBUDSMAN: Call the IEEE Member Services toll-free number, +1 800 678 4333 (US)

or +1 732 981 0060 (international), or email help@computer.org.

revised 22 May 2008

Authorized licensed use limited to: Purdue University. Downloaded on April 30, 2009 at 12:01 from IEEE Xplore. Restrictions apply.

