
60	 This article has been peer-reviewed.� Computing in Science & Engineering

P e r f o r m a n c e
A n a l y s i s

Measuring High-Performance 
Computing with Real Applications

Mohamed Sayeed, Hansang Bae, Yili Zheng,  
Brian Armstrong, Rudolf Eigenmann, and Faisal Saied
Purdue University

The computer platforms the authors describe here performed both the best and the worst 
in a test of selected applications. “Best performance” significantly depended on the problem 
being solved, calling into question the value of computer rankings that use simplistic metrics.

B enchmarking can help us quantify 
the ability of high-performance com-
puting (HPC) systems to perform 
certain, known tasks. An obvious use 

of the results is to find a given architecture’s 
suitability for a selection of computer applica-
tions. Other equally important uses include the 
creation of yardsticks to assess the progress and 
requirements of future HPC technology. Such 
measurements must be based on real computer 
applications and a consistent benchmarking pro-
cess. Although metrics that measure simple pro-
gram kernel behavior have worked well in the 
past, they fail to answer questions that deal with 
the true state of the art of today’s HPC technol-
ogy and the directions future HPC development 
should take. These answers have a direct impact 
on competitiveness.

To quantify this belief, we compared kernel 
benchmarks with real application benchmarks. 
We used high-performance Linpack (HPL) to 
represent kernel benchmarks; researchers often 

use HPL in highly visible projects, such as those 
ranked in the top 500 supercomputers (www.
top500.org). For application benchmarks, we se-
lected four computational codes represented in 
the Standard Performance Evaluation Corpo-
ration’s SPEC HPC2002 and SPEC MPI2007 
suites (www.spec.org/hpg) and in the US Na-
tional Science Foundation (NSF) HPC system 
acquisitions process. 

Although we advocate the use of real applica-
tion benchmarks, it’s important to note that ker-
nel benchmarks have an essential role—a small 
code fragment that can time a single message ex-
change, for example, is most appropriate for mea-
suring a message-passing function’s latency. We 
don’t argue here that small benchmarks are unim-
portant, but that people often use them to answer 
the wrong questions. Kernels are appropriate for 
measuring system components, but observations 
of real application behavior are essential for as-
sessing HPC technology.

Key Benchmarking Questions
Table 1 lists some important questions and indi-
cates the ability of either kernel or full application 
benchmarks to provide answers. The first ques-
tion considers the time required to solve today’s 
important problems. We might learn that a biol-
ogy application takes a full year to fold a specific 
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protein on a present-day HPC platform or that 
forecasting the weather with a certain resolution 
and accuracy takes 10 hours. For obvious reasons, 
kernel benchmarks don’t address such questions: 
we can’t infer solution times for real problems 
from kernel execution times. In contrast, real ap-
plication benchmarks with data sets that represent 
actual problems give direct answers.

The second question deals with relative per-
formance. Although both types of benchmark 
provide answers, a system’s overall ranking can 
hinge on the type of application involved. The 
same machine can perform the best and the 
worst, so relying on simple numbers not only pro-
vides inaccurate answers, it can lead to the wrong 
conclusions about machine suitability and HPC 
technology in general.

The strength of specialized kernel benchmarks 
is their ability to measure individual machine fea-
tures by focusing on a particular system aspect. 
However, the results don’t answer the question of 
relative component importance—breaking down 
a real application’s execution time into computa-
tion, communication, and I/O, for example, shows 
each component’s true relative importance. We 
can’t get this type of information by combining 
each component’s individual kernel benchmarks. 
However, kernel metrics can answer the question 
of what percentage of peak performance the float-
ing-point operations can achieve: such metrics 
are idealized bounds under a given code pattern. 
But these results don’t represent the percentage of 
peak performance a real application can achieve.

The sixth question deals with an important 
group of issues that benchmarking and perfor-
mance evaluation must address: the characteristics 
of computational applications. Kernel benchmarks 
can’t help here—they’re typically created by iden-
tifying real application characteristics and then 
focusing on one of them.

Benchmarking can help predict the applica-
tion behavior of data sets and machines that are 
much larger than what’s feasible today. As the 
last question illustrates, the value of kernel ver-
sus real application benchmarks for such predic-
tion is still controversial.

Challenges of Measuring  
Performance with Real Applications
Communities ranging from HPC customers to 
computer manufacturers to research funding 
agencies to scientific teams have increasingly 
called for better yardsticks. Let’s look at the 
stark contrast between this need and conven-
tional wisdom.

Simple Benchmarks Are Overly Easy to Run
One of the greatest challenges of evaluating per-
formance with real applications is the simplicity 
with which we can run kernel benchmarks. With 
the investment of minutes to a few hours, we can 
generate a benchmark report that seemingly puts 
our machine “on the map.” The simplicity of ker-
nel benchmarks can overcome portability issues 
(no changes to the source code are necessary to 
port it to a new machine) as well as software envi-
ronment issues (the small code is unlikely to en-
gage unproven compiler optimizations or to break 
programming tools in a beta release). This sim-
plicity might even overcome hardware issues—the 
kernel is unlikely to approach numerical instabil-
ity, to which a new processor’s floating-point unit 
might be susceptible.

However, these are the very features that we 
want in a true HPC evaluation. We don’t want a 
machine to show up in the “Best 100” if it takes 
major code restructuring to port a real application, 
if porting the application requires major addition-
al debugging, if the tools and compilers aren’t yet 
mature, or if the hardware is still unstable.

Specialized benchmarks exist for a large num-
ber of metrics, including message counting in 
message-passing interface (MPI) applications, 
measuring the memory bandwidth of symmetric 
multiprocessor (SMP) platforms, gauging fork-
join overheads in OpenMP implementations, 
studying scheduling characteristics,1 and many 
more. The SPEC benchmarking organization 
(www.spec.org) alone distributes 12 major bench-

Table 1. Comparison of kernel versus full application metrics.*

Benchmarking question Ability to answer

Kernels Full 
applications

1. �What time is required to solve 
important computational problems on 
today’s high-performance computing 
platforms?

n/a +

2. �What’s the overall platform 
performance?

– +

3. How do system components perform? + –

4. �What’s the importance of system 
components relative to each other?

n/a +

5. �What’s the importance of system 
components relative to upper bounds?

– +

6. �What are the characteristics of 
important computational problems?

– +

7. �What are the characteristics of 
important future problems?

– +

* “+” is a good answer, “–” is a limited answer, and “n/a” is no answer.
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mark suites. Diverse suites play an essential role 
because they can help us understand a specific 
aspect of a system in depth, but when it comes 
to understanding the behavior of a system as a 
whole, these detailed measures don’t suffice. Even 
if a specific benchmark could measure each and 
every aspect of a system, no formula exists to help 
us combine the different numbers into an overall 
system metric.

We Can’t Abstract  
Realistic Benchmarks from Real Applications
An inviting approach to benchmarking with real 
applications is to extract important excerpts from 
real codes, with the aim of preserving the relevant 
features and omitting the unnecessary ones. Un-
fortunately, this means we’re making decisions 
about an application’s less important parts that 
might be incorrect. For example, we might find 
a loop that executes 100 computationally near-
identical iterations and reduce it to just a few, 
but this abstraction might render the code use-

less for evaluating adaptive compiler techniques: 
repetitive behavior can be crucial for an adaptive 
algorithm to converge on the best optimization 
technique. Similarly, data downsizing techniques2 
might ensure that a smaller problem’s cache be-
havior remains the same, but the code would be-
come useless for determining the real problem’s 
memory footprint.

The difficulty of defining scaled-down bench-
marks is evident in the many criteria for bench-
mark selection suggested in past efforts: codes 
should contain a balance of various degrees of 
parallelism, be scalable, be simple yet reflect real-
world problems, use a large memory footprint and 
a large working set, be executable on a large num-
ber of processors, exhibit a variety of cache-hit ra-
tios, and be amenable to a variety of programming 
models for shared-memory, multicore, and cluster 
architectures. Last but not least, benchmark codes 
should represent a balanced set of computer ap-
plications from diverse fields.

Obviously, nothing could satisfy all of these 
demands—some of them are directly contradic-

tory. Furthermore, selecting yardsticks by such 
criteria would dismiss the fact that we want to 
learn about these properties from real applica-
tions. We want to learn how scalable a real ap-
plication is, for example, not just select a scalable 
one. Similarly, if an application’s real data sets 
don’t have large memory footprints, then our 
evaluation has produced an important result: in-
flating input data parameters to fill some memory 
footprint benchmark selection criterion wouldn’t 
be meaningful.

Today’s Real Applications  
Might Not Be Tomorrow’s
Large, real applications tend to contain legacy 
code with programming practices that don’t re-
flect tomorrow’s software engineering principles 
and algorithms.

This is perhaps the strongest argument against 
using today’s real applications to determine future 
HPC needs, but when we ask what future applica-
tions should include, the answer isn’t forthcoming. 
Should we use specific selection criteria? Are we 
sure that the best of today’s algorithms and soft-
ware engineering principles will find themselves 
in tomorrow’s applications? If we choose a certain 
path and miss, we risk losing on two fronts: aban-
doning today’s established practices and erring in 
what tomorrow’s technology will be. Neverthe-
less, the best predictor of tomorrow could very 
well be today’s established practice.

Benchmarking Isn’t Eligible  
for Research Funding
Performance evaluation and benchmarking proj-
ects are long-term efforts, so data must be gath-
ered and kept for many years. (The 15-year-old 
perfect-benchmarks@csrd.uiuc.edu mailing list 
still receives occasional queries.) Unfortunately, 
this type of task doesn’t easily include the advanced 
performance-modeling topics that interest scien-
tists, so most efforts that focus on benchmarking 
infrastructure and its long-term support lack con-
tinuity in funding from science sponsors.

Programs that create such services at fund-
ing agencies could eventually appear—perhaps 
this article will motivate future initiatives. An 
alternative is a combined academic/industrial ef-
fort, such as SPEC’s High-Performance Group 
(HPG), in which industrial benchmarking needs 
meet academic interests, resulting in suites of 
real, HPC applications.

Maintaining Benchmarking Efforts Is Costly
A performance evaluation and benchmarking ef-

Large, real applications tend to contain 

legacy code with programming practices that 

don’t reflect tomorrow’s software engineering 

principles and algorithms.
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fort entails collecting test applications, ensuring 
portability, developing self-validation procedures, 
defining benchmark workloads, creating bench-
mark run and result submission rules, organizing 
result review committees, disseminating the suite, 
maintaining result publication sites, and even pro-
tecting evaluation metrics from misuse. Dealing 
with real, large-scale applications further neces-
sitates assisting benchmark users and maintain-
ing the involvement of domain experts in their 
respective application areas.

The high cost of these tasks is obvious. Many 
benchmarking efforts cover their costs through 
initial research grants or volunteer efforts, but 
this support typically pays for the first round of 
benchmark definitions, not subsequent steps or 
publication sites. To date, SPEC is the only orga-
nization that maintains full, continuously updated 
benchmarking efforts. Its funding comes primar-
ily from industrial membership and a comparably 
small fee for the actual benchmark suites.

Proprietary Application Benchmarks  
Can’t Serve as Open Yardsticks 
So, should realistic benchmarks match the ex-
act applications that will run on the target sys-
tem of interest? Clearly, prospective customers 
think their own applications would be the best 
choice for testing a system’s desired functional-
ity. It might serve the customer best if multiple 
vendors ran applications in a way that allowed 
fair comparison, but because most applications 
are proprietary, neither the scientific commu-
nity nor the public can verify or scrutinize the 
generated performance claims. Hence, the value 
of proprietary benchmarks is limited to simple 
metrics.

Public benchmarks might be of higher value. 
Fair benchmark results can be costly to generate, 
and vendors are under pressure to produce good 
results in a very short period, often competing 
internally for machine resources. Unless cus-
tomers can closely supervise the benchmarking 
process with significant expertise, they might 
not get results that they can compare fairly. 
Without any deceptive intentions on the vendor 
side, the lack of a clear evaluation methodol-
ogy often allows shortcuts and “optimizations” 
that can differ significantly among evaluation 
groups. In contrast, even though established, 
public, full-application benchmark results might 
not have computational patterns identical to a 
customer’s codes, the performance numbers’ 
consistency and availability might outweigh this 
drawback.

Meeting the Challenge:  
Toward a Benchmarking Methodology
An advanced HPC benchmarking methodology

creates performance yardsticks based on real 
applications and openly shared data sets,
defines metrics that indicate overall prob-
lem solution time as well as the performance 
of important kernels that constitute the 
application,
defines rules for running and reporting bench-
marks, so that comparisons are fair and any rel-
evant information is fully disclosed, and
enables the creation of a repository that maintains 
benchmarking reports over a long time period.

Rules are only useful if they’re enforceable, 
which emphasizes the need for a benchmark re-
view process. The goal here is to facilitate ob-
jective efforts rather than self-evaluations by 
machine vendors and HPC platform owners. 
Full disclosure is also crucial: the applications, 
their data sets, the benchmarking process, and 
the software and hardware configuration with 
which the results were obtained must all be open 
to inspection.

An open repository of fully disclosed bench-
mark results is essential to fair, consistent HPC 
evaluation. Such an effort benefits prospective 
customers of HPC systems as well as researchers 
attempting to advance HPC technology. It’s even 
more important in the acquisition and evaluation 
of HPC systems with public funds.

Benchmarking Efforts  
with Real Applications
Performance evaluation efforts with real applica-
tions began to emerge in 1988 with the Perfect 
Benchmarks.3,4 This set of scientific and engi-
neering applications was intended to replace ker-
nel-type benchmarks and the commonly used 
peak-performance numbers, and represented a 
significant step in the direction of application-
level benchmarking. Although they continue to 
circulate in the research community, the origi-
nal Perfect Benchmarks are small compared to 
today’s real applications (the largest included 
some 20,000 lines of Fortran 77), and their 
data sets execute in the order of seconds on today’s 
machines. No results Web site is available for the 
Perfect Benchmarks.

Similarly, the ParkBench (for PARallel Kernels 
and BENCHmarks)5 effort emerged in 1992 with 
some research funding but didn’t update its initial 
suites in response to newer generations of HPC 

•

•

•

•
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systems. The effort was very ambitious in its goal 
of delivering a set of benchmarks that range from 
kernels to full applications. The largest, full-
application suite was never created, though.

SPEC HPG
Like the Perfect Benchmarks, SPEC also debuted 
in 1988. Although it’s largely vendor based, the 
organization includes a range of academic af-
filiates. Initially, SPEC focused on benchmarking 
uniprocessor machines and, in this area, became 
the leader in providing performance numbers to 
workstation customers. SPEC suites are also in-
creasingly used by the research community to 
evaluate the performance of new architecture 
concepts and software prototypes. Today, SPEC 
offers a large number of benchmarks that evalu-
ate workstations, graphics capabilities, and high-
performance systems. Most notably for HPC 
evaluation, the SPEC HPG formed in 1994 out 
of an initiative to merge the Perfect Benchmarks 
effort’s expertise in HPC evaluation with SPEC’s 
capability to sustain such efforts long term. Since 
its foundation, this group has produced several 
HPC benchmarks, including the HPC suite,6–8 
the OMP suite (for OpenMP applications),9 and 
the MPI suite.

SPEC’s HPG suites are based on widely used 
computational applications that can be openly 
distributed to the community. The codes are 
implemented with the MPI and OpenMP stan-
dards for parallel processing, and SPEC provides 
a result submission and review process, a re-
pository at www.spec.org/hpg, and a continuous 
benchmark update process. Intended consumers 
include end users, system vendors, software ven-
dors, and researchers.

Other HPC Benchmarking Efforts 
Other attempts to provide HPC benchmarks have 
emerged over the past decade as well. Notable 
examples include the Euroben effort in Europe 
(www.euroben.nl) and NASA’s Parallel Bench-
marks (NPB).10

The US Department of Defense’s High Perfor-
mance Computing Modernization Program (HPC-
MP; www.hpcmo.hpc.mil) developed its own suites 
that include synthetic benchmarks and real appli-
cations to support its yearly acquisition activities. 
A related effort is the benchmarking project that’s 
part of Darpa’s High-Productivity Computing 
Systems (HPCS) program (www.highproductivity. 
org). Currently, this effort has suites of kernel 
benchmarks and several synthetic compact applica-
tions. Another important effort is the benchmark-
ing process defined by the NSF for its acquisition 
of a national HPC system infrastructure. The NSF 
benchmarks include both a set of kernel bench-
marks and real applications for system evaluation. 
However, neither the HPCS nor the NSF bench-
marking efforts have an associated project to main-
tain a result repository that the public can view.

Metrics for HPC Evaluation
The general consensus in the benchmarking com-
munity is that overall performance must be evalu-
ated via wall-clock time measurements, but an 
open and often controversial issue is how to com-
bine measurements from multiple benchmarks into 
one final number. SPEC’s approach is to leave the 
decision up to the benchmark report reader—that 
is, each code is reported separately. Other suites, 
such as SPEC CPU, SPEC OMP, and SPEC MPI, 
report the geometric mean of individual program 
performance results. The NSF benchmarking ef-
fort includes both kernel and applications metrics, 
which are reported independently. Kernel bench-
marks evaluate a wide variety of system compo-
nents, so the metrics also vary widely, and to our 
knowledge, no current benchmarking effort can 
relate kernel and application benchmarks by, for 
example, measuring important constituent kernels 
as part of a real application benchmark run.

An increasingly important class of metrics 
characterizes the program properties of computa-
tional applications (examples include the use and 
frequency of algorithms, program patterns, and 
compiler analysis results). Understanding such 
benchmarking metrics is key to improving the 
scalability of computational applications.

Tools for Gathering Metrics 
Obtaining overall timing metrics is relatively 

Figure 1. Top application performers. This aggregate view combines 
the SPEC HPC2002 suite’s results into an overall rank, with the bars 
subdivided into each individual benchmark application’s contributions 
to the rank. The TAP lists also show rankings based on other 
application suites.
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straightforward, but tools for gathering detailed 
execution characteristics are often platform-spe-
cific, so it can be difficult to obtain the metrics 
of interest on a given platform. It’s even more 
difficult to conduct comparative evaluations that 
gather a certain metric across several platforms. 
Among the tools we’ve used in our projects are 
mpiP, hpmcount, and strace:

mpiP is a lightweight profiling library for MPI 
applications that reports the percentage of time 
spent in the MPI. It also includes the times each 
MPI function uses. 
IBM’s Hardware Performance Monitor suite in-
cludes a simplified interface, hpmcount, which 
summarizes data from selected hardware coun-
ters and computes some useful derived metrics, 
such as instructions and flops per cycle. 
We can measure I/O behavior (by recording 
I/O system call activities) with the strace com-
mand; from this output, we can extract statis-
tics for file I/O using a script.

These tools are but a small sample of a large 
set of instruments available on myriad platforms 
today, thus an important goal is uniformity. 
Benchmarkers need tools and interfaces to gather 
relevant performance data consistently across the 
range of available platforms. Ideally, these tools 
won’t just report volumes of performance coun-
ter results—they’ll also abstract these volumes, 
thereby creating the end metrics of interest.

•

•

•

Ranking HPC Systems
Benchmark reports for real application suites, 
such as the SPEC HPC codes, can help us create 
more realistic rankings of HPC platforms (www. 
purdue.edu/TAPlist). Figure 1 shows the top ap-
plication performers (TAP) list as of January 2006; 
this list defines an aggregate metric with which we 
can combine the results of our three benchmark 
applications into an overall rank. The metric 
weights individual application performance results 
according to their average runtime across different 
platforms. The list also allows a single benchmark 
to be used for ranking. The TAP list contains links 
to the original SPEC benchmark reports.

Performance Results
We used four application benchmarks and tested 
them on three different parallel architectures 
to evaluate performance; we discuss the perfor-
mance results in this section in terms of the key 
benchmarking questions discussed earlier. Table 
2 gives a brief description of the four applications 
along with the problem being solved. The codes 
GAMESS and WRF are members of the SPEC 
HPC and NSF benchmark suites (see  www.nsf.
gov/pubs/2006/nsf0605/nsf0605.jsp); WRF and 
MILC are also part of SPEC MPI2007. Here, 
we’ve measured the SPEC HPC versions of 
GAMESS and WRF and the MILC version of the 
NSF benchmarks; the Seismic application is part 
of the SPEC HPC suite. Where appropriate for 
comparison, we’ve shown results obtained from 

Table 2. Wall-clock execution times and problems solved by application benchmarks on the IBM P690 platform, 
using 32 processors. 

Application Execution time Problem description for a medium data set

Seismic (SPECseis) 625 sec. Seismic is a suite of codes typical of the seismic processing applications used 
to find oil and gas. The data set processes seismic traces of 512 × 48 × 128 
× 128. (Samples per trace × traces per group × groups per line × number of 
lines, where a trace corresponds to a sensor that has a sampling frequency; the 
sensors are strung out on multiple cables behind a ship.) The total data set size 
in Phase 1 of SPECseis is 1.5 Gbytes and reduces to 70 Mbytes in Phase 2.

GAMESS (SPECchem) 3,849 sec. GAMESS is a general ab initio quantum chemistry package. The data set 
computes self-consistent field wavefunctions (RHF type) for thymine (C5H7N3O 
– 16 atoms), one of the bases found in nucleic acids.

WRF (SPECenv) 742 sec. WRF is a weather research and forecasting modeling system for the mesoscale 
(meters to thousands of kilometers). The data set simulates the weather over 
the continental US for a 24-hour period starting from Saturday, 3 November 
2001, at 12:00 a.m. The grid is 260 × 164 × 35 with a 22-km resolution.

MILC 1,497 sec. MILC is used for large-scale numerical simulation of quantum chromodynamics 
to calculate the masses and other basic properties of strongly interacting 
particles (quarks and gluons). It simulates quantum chromodynamics with 
improved staggered quarks of two masses and performs a computation over a 
4D lattice with 32 points, involving approximately 34 million variables for the 
integral evaluation.
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the HPL kernel benchmarks (the HPL codes are 
also part of the NSF benchmark suite).

Overall Performance
Absolute application performance is the total run-
time for solving an overall application problem. The 
machines we used included an IBM P690 (www. 
ccs.ornl.gov/Cheetah/Cheetah.html), an SGI 
Altix (www.ccs.ornl.gov/Ram/Ram.html), and 
an Intel Xeon cluster (www.itap.purdue.edu/rcac/
news/news.cfm?NewsID=178). The runtimes 
for these medium data sets on a 32-processor 
IBM P690 platform ranged from approximately 

10 minutes (for Seismic) to more than an hour 
(for GAMESS).

Figure 2 shows the relative performance of the 
individual benchmark applications on the three 
platforms as well as the HPL benchmark’s per-
formance. We took measurements on up to 64 
processors, except for Seismic (up to 32; the 64-
processor runs didn’t validate).

The four applications had different rankings on 
the platforms. In terms of execution time on the 
highest measured processor count, each platform 
performed both the best and the worst across the 
different benchmarks. In terms of speedup be-
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Figure 2. Relative performance of application benchmarks on three platforms. All performance numbers are relative to the 
execution speed on an Intel Xeon with four processors; we used the medium data set in all executions. For comparison, we 
show the execution times of the same machines using the HPL kernel benchmarks (with N = 9,900). Note that every machine 
performed the best on one application and the worst on another. Hence, the relative ranking of these systems critically 
depends on the problem being solved.
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havior, the IBM P690 platform scaled the best 
in Seismic, WRF, and MILC, but the worst in 
GAMESS. The good scaling behavior on MILC 
was consistent with a relatively high computation-
to-communication ratio, which Figure 3 shows. 
On both the Intel Xeon and the SGI Altix, Seismic 
scaled only to 16 processors and WRF only to 32. 
We observed superlinear behavior for GAMESS 
on SGI Altix and Intel Xeon up to 32 processors 
and for MILC on 32 and 64 processors. The su-
perlinear behavior might be due to data fitting 
nicely in L2 cache; we assumed ideal behavior for 
the four-processor case, as this was the smallest 
processor count the medium data sets could run 
on due to memory limitations.

The kernel benchmark results (HPL with N = 
9,900) were most similar to those of WRF. Evi-
dently, because the different applications’ perfor-
mance behavior varied significantly, the kernel 
benchmark reflected only a small part of the ap-
plication spectrum.

Component Performance
As we mentioned earlier, system component mea
surements give insight into the behavior of individual 

machine features: their relative performance shows 
a feature’s contribution to a computational prob-
lem’s overall solution. Furthermore, component 
performance relative to some upper bound shows 
us how efficiently the machine feature is exploited 
compared to theoretical limits. We used the per-
formance analysis tools mpiP, hpmcount, and strace 
to measure specific application component charac-
teristics such as communication, computation, and 
I/O. Figure 3 shows the time breakdown.

Communication characteristics. We measured the 
communication component overhead for all 
the application benchmark codes and the HPL 
benchmark with constant and scaled problem 
sizes, and found the communication cost to be 
5 to 40 percent of the overall execution time. 
Seismic did the least amount of communication, 
followed by GAMESS, MILC, and WRF. We 
measured all four phases of Seismic separately 
and later aggregated them; ultimately, Seismic 
showed significant load imbalance. In GAMESS, 
a single processor communicated 100 percent of 
the time. WRF, MILC, and HPL were the most 
balanced, but the difference between the least 
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communication, and I/O, we see different application characteristics such as if the application is compute, communication, 
or I/O bound.
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and most communicating processors was still 50 
percent or more.

HPL communication depended on problem 
size and exhibited locality characteristics: with an 
increasing data set size, communication reduced 
significantly. This feature of the kernel bench-
mark led to generally good scaling behavior on 
very large machines, but it also contributed to the 
difference in rank lists of application versus kernel 
benchmarks. We observed a significant difference 
in communication cost overhead across architec-
tures (IBM P690 and Intel Xeon Linux cluster) for 
the MILC and WRF benchmarks because they’re 
communication intensive. The IBM P690 system 
provided higher communication bandwidth than 
the Intel Xeon system.

I/O characteristics. We measured I/O volume on 
all the benchmark codes and found that MILC 
and HPL didn’t perform any I/O, whereas in 
both WRF and GAMESS, a single processor 
performed all the I/O. The I/O volumes of these 
codes (four Seismic phases measured separately, 
WRF, and GAMESS) ranged from 61 Mbytes to 
5.5 Gbytes. The fraction of execution time taken 
by the I/O was small in both GAMESS and WRF 
but significant in Seismic, especially in phase 1. 
The I/O read and write volumes differed, yet they 
took the same amount of time due to differences 
in read and write speed.

Memory footprints. Figure 4 shows the bench
mark’s memory footprints as a function of the 
number of processors. Again, we split Seismic into 
its four execution phases, with the sizes ranging 
from 20 Mbytes per processor in Seismic’s phase 1 

to 1 Gbyte per processor in MILC (due to the large 
footprint, MILC couldn’t run on less than four 
processors). MILC, WRF, and Seismic’s phases 3 
and 4 exhibited the commonly expected behavior: 
memory footprint decreased steadily with increas-
ing processor numbers. But in Seismic’s phases 1 
and 2 and in GAMESS, the memory footprint was 
independent of the number of processors. This 
finding is important because it refutes the com-
mon assumption that larger systems will naturally 
accommodate larger data sets. This assumption is 
the basis for a benchmark methodology that lets 
data sets “scale” and thus reduces communica-
tion, leading to seemingly improved performance 
numbers on large systems. Our results show that 
this path to scalability might not be correct.

Application Characteristics
We can characterize computational applica-
tions from many diverse angles—the physi-
cal problem being solved, the algorithms used, 
computer language and source code properties, 
compiler-applied optimization methods, gener-
ated instruction characteristics, and upper limit 
analyses, to name a few. A systematic methodol-
ogy of application characterization11 could guide 
the process of answering the relevant questions 
in this area. Table 3 shows a small set of such 
data, providing insight into the core algorithms 
and programming languages used to compose 
our test applications.

As we mentioned earlier, understanding the 
characteristics of today’s applications could help us 
anticipate the behavior of tomorrow’s applications. 
Most performance prediction techniques are based 
on application signatures and machine profiles, 
combined via convolution methods. In one ap-
proach,12 the authors defined synthetic kernels that 
exhibit interesting code and machine properties 
and then extrapolated these kernels’ measured be-
havior to larger data set sizes. Another approach13–

15 measured an application’s key characteristics on 
a current platform and then forecasted the appli-
cation behavior on scaled data and machine sizes, 
using predictive formulas. The authors derived the 
formulas with a least-squares fitting approach15 or 
via the compiler from the source code, expressing 
the way input data affects the volume of computa-
tion, communication, and I/O.

A good benchmarking methodology can 
save a tremendous amount of resourc-
es in terms of human effort, machine 
cycles, and cost. Such a methodology 
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Figure 4. Benchmark memory footprints. The total memory size per 
processor for an Intel Xeon cluster varies widely depending on the 
benchmark used.
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must consider the relevance and openness of the 
chosen codes, well-defined rules for executing and 
reporting the benchmarks, a review process to 
enforce the rules, and a public repository for the 
obtained information. For the methodology to 
be feasible, it must also be supported by adequate 
tools that enable the user to consistently execute 
the benchmarks and gather the requisite metrics.

At the very least, reliable benchmarking results 
can help people make decisions about HPC acqui-
sitions and assist scientists and engineers in sys-
tem advances. By saving resources and enabling 
balanced designs and configurations, realistic 
benchmarking ultimately leads to increased com-
petitiveness in both industry and academia.�
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