Incorporation of OpenMP Memory Consistency
into Conventional Dataflow Analysis

Ayon Basumallik and Rudolf Eigenmann

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285
http://www.ece.purdue.edu/ParaMount

Abstract. Current OpenMP compilers are often limited in their anal-
ysis and optimization of OpenMP programs by the challenge of incor-
porating OpenMP memory consistency semantics into conventional data
flow algorithms. An important reason for this is that data flow analy-
sis within current compilers traverse the program’s control-flow graph
(CFG) and the CFG does not accurately model the memory consis-
tency specifications of OpenMP. In this paper, we present techniques
to incorporate memory consistency semantics into conventional dataflow
analysis by transforming the program’s CFG into an OpenMP Producer-
Consumer Flow Graph (PCFG), where a path exists from writes to reads
of shared data if and only if a dependence is implied by the OpenMP
memory consistency model. We present algorithms for these transforma-
tions, prove the correctness of these algorithms and discuss a case where
this transformation is used.

1 Introduction

OpenMP [I] has established itself as an important method and language exten-
sion for programming shared-memory parallel computers. With multi-core ar-
chitectures becoming the commodity computing elements of the day, OpenMP
programming promises to be a dominant mainstream computing paradigm.

OpenMP is supported by several vendors by means of compilers and run-
time libraries that convert OpenMP programs to multi-threaded code. However,
current compilers are often limited in the extent to which they use the mem-
ory consistency semantics of OpenMP to optimize OpenMP programs. A reason
for this is that most data flow analysis employed by state-of-the-art optimizing
compilers are based on the traversal of a conventional control-flow graph — a
program representation for sequential programs. In sequential programs, data
always flows as expressed by the control-flow graph (CFG) and data flow algo-
rithms infer dependences by traversing this CFG. In parallel programs, this is
no longer accurate, as data can flow into a thread potentially at any read from a
shared variable. To understand such flow, the specific memory consistency model
of the employed parallel programming paradigm must be considered.

In this paper, we present techniques to incorporate OpenMP memory consis-
tency semantics into conventional control-flow graphs. Our proposed techniques

R. Eigenmann and B.R. de Supinski (Eds.): IWOMP 2008, LNCS 5004, pp. 71@ 2008.
© Springer-Verlag Berlin Heidelberg 2008

72 A. Basumallik and R. Eigenmann

transform a conventional control-flow graph (CFG) into an “OpenMP Producer-
Consumer Flow Graph” (PCFG), which resembles a conventional CFG and incor-
porates OpenMP memory consistency semantics into its structure. This enables
the use of conventional data flow algorithms for OpenMP programs.

Related approaches to internally representing OpenMP programs for compiler
analysis have proposed techniques to incorporate OpenMP control-flow semantics
into a program’s control-flow graph [23]. The present paper is meant to comple-
ment, rather than compete with, these related approaches. The focus of this paper
is more specifically on techniques to incorporate the memory consistency seman-
tics of OpenMP programs into the internal representation. We shall illustrate why
simply incorporating OpenMP control-flow information into the CFG may not be
sufficient to account for the effects of the OpenMP memory consistency model.
We shall then present formal algorithms to transform a conventional CFG into a
representation that accurately reflects OpenMP memory consistency.

The rest of the paper is organized as follows. Section 2] describes the OpenMP
Memory Model and introduces transformations that can be applied to a pro-
gram’s CFG to incorporate OpenMP semantics. Section] presents algorithms
to accomplish the transformations required to create the PCFG, presents a for-
mal proof of correctness of these algorithms and discusses an application of the
PCFG. Section M discusses related work. Section [l concludes the paper.

2 The OpenMP Memory Consistency Model

The OpenMP memory consistency model is roughly equivalent to Weak Consis-
tency [M]. Writes to shared data by one thread are not guaranteed to be visible
to another thread till a synchronization point is reached. OpenMP has both
implicit and explicit memory synchronization points. Examples of explicit syn-
chronization points include barrier and flush directives. Implicitly, there are
memory synchronization points at the end of work sharing constructs (unless
they have explicit nowait clauses) and at the end of synchronization directives
like master and critical. This means, for example, that writes to shared data in
one iteration of an OpenMP for loop by one thread are not guaranteed to be
visible to another thread executing a different iteration of the same loop till the
implicit synchronization at the end of the loop is reached.

Figure[lillustrates some ramifications of how the OpenMP consistency model
affects analysis that are based on the program’s control-flow graph. The nowait
clause in loop L1 denotes that writes to the array A by one thread in loop L1
are not guaranteed to be visible to another thread executing iterations of loop
L2. However, any analysis based on the corresponding control-flow graph (which
incorporates OpenMP control information) shown in the figure will find a path
from vertex vl to v2 and incorrectly infer that there is a dependence between
the write to A in V1 and the read of A in v2.

On the other hand, the flush and atomic directives denote that the atomic
update to the scalar t flag after loop L2 by one thread may be visible to another
thread reading tflag in loop L1. However, in the graph there is no path from

Incorporation of OpenMP Memory Consistency 73

v3 to vl and data flow analysis based on this graph will infer that there is no
dependence between the two.

To correctly model these two cases, the control-flow graph needs to be adjusted
so that there is a path from the write to a shared variable to a read if the write by
one thread is visible to the read by another thread as per OpenMP specifications.
A way of doing this for the graph shown in Figure Il would be to add the edge el
to account for the flush directives, delete the edge €2 to account for the nowait
clauses and to add edges e3 and e4 to keep other paths in the graph unbroken
even though the edge €2 has been deleted. By doing these edge additions and
deletions, we create an OpenMP producer-consumer flow graph where there is
a path from a write W to a read R in the program if and only if the write W
occurring on one thread can be visible to the read R occurring on another thread.
In certain cases, like the reads and writes connected by edge el in Figure[Il the
read may be before the write in program order.

The next section of this paper presents formal algorithms to create such
a OpenMP Producer-Consumer Flow Graph, starting from the sequential

tfllag=1; /*Start_parallel*/

#pragma omp parallel

{
/* Loop L1 */

/*loop_entry for Loop L1#/

#pragma omp for nowait

for(j=1;j<Ni;j++) {

l

/* loop_entry for Loop L2 */

S i) vl /* Loop Body for Loop L1 */ v2 l
i /* Loop Body for Loop L2 */
o =tflag o Sl :
Aljl = wo=A]
Alil= ... v e
’ l
} 1
/¥ Loop L2 */] /* loop exit for Loop L1 */ e +/* loop exit for Loop L2 */ l
. 1 e /3
#pragma omp for nowait . T
<M '
~ v tflag++
} S~o o
P—— 4TI

tflag++ ;
/*End_parallel*/

}

Fig. 1. Incorporation of OpenMP Memory Consistency Semantics: The graph edges
drawn with solid arrows are present in the CFG for the program. The dependence
implied between writes to array A in loop L1 and the read of A in loop L2 are relaxed by
the nowait clause. Therefore, the path from vertex v1 to v2 in the sequential CFG must
be broken to model this relaxation. The combination of flush and atomic directives
imply a dependence between the update to tflag in vertex v3 and the read of tflag in
vertex v1. Therefore, a path must be introduced between v3 and vl in the sequential
CFG to model this additional dependence. These path adjustments are accomplished
by removing edge €2 and adding edges el, €3, e4 to the CFG.

74 A. Basumallik and R. Eigenmann

control-flow graph for the program. We are incorporating these algorithms into
the Cetus [5] infrastructure as part of an OpenMP to MPI translation pass.

3 Incorporation of OpenMP Memory Consistency into
the Dataflow Analysis

Our compiler creates an OpenMP producer-consumer flow graph using four
steps —

1. Identify Shared Data.

2. Incorporate OpenMP control and data synchronization.
3. Relax Sequential Consistency.

4. Adjust for flushes.

We start with the sequential control-flow graph (CFG) for the program. The
first step distinguishes between shared and private data in the program. The sec-
ond step incorporates OpenMP constructs into the CFG to create an OpenMP
control-flow graph (OpenMP CFG). The third and fourth steps first relax and
then tighten ordering constraints in the program based on OpenMP memory con-
sistency semantics to transform the OpenMP CFG into an OpenMP Producer-
Consumer Flow Graph (PCFG).

3.1 Identification of Shared Data

The very first step in the incorporation of OpenMP semantics is to distinguish
between shared and private data in the program. Shared data is defined as data
in the program that may be read or written by more than one thread. Private
data, on the other hand, is written by only a single thread in the program.
The only way that private data is affected by the OpenMP semantics is when
it is classified using clauses such as firstprivate, lastprivate and threadprivate.
Thus, dataflow analysis for private data can still use the sequential CFG for the
program. It is for the shared data that the PCFG needs to be created before any
dataflow analysis can be done. In the very first step, our compiler identifies data
that may be shared between multiple threads using the algorithm in Figure
At this point, our compiler has separated data in the program into two classes
- shared and private. Dataflow analysis for private data can be now invoked using
the sequential CFG for the program. Once that analysis is complete, our compiler
transforms the graph to incorporate OpenMP memory consistency semantics
prior to invoking dataflow analysis for shared data. For this, our compiler starts
by making OpenMP constructs explicit in the CFG to create the OpenMP CFG.

3.2 Making OpenMP Constructs Explicit

Our starting point for this step is the sequential CFG G =< V, E > for the
program, where a vertex V represents a basic block in the program and an
edge F = V; — V5 exists if the basic block denoted by V5 is a successor of

Incorporation of OpenMP Memory Consistency 75

Algorithm list shared variables
Input : A - An OpenMP program. Output : S - A List of Shared Variables in A.
Start list shared variables

1. Set S =9

2. do VR, Ris an OpenMP parallel region in A

3. Set V' = Set of all variables used in R

4. Set L = Set of all variables declared locally within R

5. Set PV = Set of all variables explicitly declared private for R
6. Set SV = Set of all variables explicitly declared shared for R
7. Set S=SU(V-L-PV)USV

8. end do
9.if (S = @) , exit, endif
10. do VF, F'is function call within program A

11. do VPa , Pa is a parameter of F'

12. if (Pa € 5)

13. Let F'P be the Procedure that defines F'

14. Let PA be the Procedure Parameter of F'P
corresponding to function parameter Pa

15. Set S=SUPA

16. end if

17. end do

18. end do

19. if (Steps 10 through 18 have added new elements to S)
20. Go to Step 10

21. end if

End list shared variables

Fig. 2. Algorithm to create list of Shared Variables in an OpenMP Program. A key
challenge in identifying shared variables is that function calls with shared variables as
parameters may introduce additional shared variables that are not explicitly identified
as shared by OpenMP directives. This algorithm addresses this challenge using the
inter-procedural analysis shown in lines 10 through 21.

the basic block denoted by Vi. To incorporate OpenMP constructs into G for
the OpenMP program, our compiler inserts vertices corresponding to OpenMP
directives. Directives that refer to a set of statements in the program code are
represented by entry and exit vertex pairs. For example, for each OpenMP
parallel region in the program, there is a parallel region entry and a parallel
region exit vertex. For each OpenMP critical section in the program, there is a
critical section entry and a critical section exit vertex.

Stand-alone directives such as the flush and barrier directives are represented
with a single vertex in the program flow graph. Each OpenMP flush vertex is
associated with a flush set, which is a list of all shared variables that need to be
flushed at that point. When the flush set is explicitly specified in the program, the
corresponding flush vertex is annotated with this flush set. The atomic directive
is represented with a pair of atomic entry and atomic exit vertices around the
atomic statement.

76 A. Basumallik and R. Eigenmann

Next, our compiler inserts an explicit barrier vertex wherever control synchro-
nization is implicit in an OpenMP directive. Thus, barrier vertices are added to
G at the entry to an exit from parallel regions and at the exit of worksharing
regions that do not have nowait clauses. flush vertices are inserted where a flush
is implicit without a barrier, such as at entry to and exit from critical, ordered
and atomic regions. Flush sets are derived by the compiler for these inserted
flush vertices. For example, for critical and atomic regions, flush sets include
the shared variables accessed in these regions. For shared variables that have a
volatile type, pairs of flush vertices enclose every access to these variables.

Thus, at the end of this step, we have an OpenMP Control Flow Graph G that
contains vertices corresponding to OpenMP constructs, barrier vertices where
control synchronization is implied in the program and flush vertices where a
data coherence is implied in the OpenMP program.

3.3 Relaxation of Sequential Consistency

With the graph G now containing explicit synchronization vertices and ver-
tices corresponding to OpenMP directives, our compiler proceeds to the next
step of relaxing sequential consistency constraints using the algorithm re-
lax sequential consistency shown in Figure Bl

In this algorithm, the compiler deletes edges from the program’s control-flow
graph, to break paths from writes to subsequent reads of shared data elements
where the weak consistency model of OpenMP specifies that the write by one
thread may not be visible to the read on another thread. Then the compiler adds
edges from the previous synchronization points in the program to preserve paths
to the read from writes before the previous synchronization.

At the end of this step, our compiler produces a control-flow graph where any
path from a producer to a consumer for a shared variable exists only if this path
exists in the original graph and the OpenMP directives in the program do not
relax this dependence. In the next step, the compiler adds paths to account for
producer-consumer relationships that are additionally introduced by OpenMP
directives.

3.4 Adjustment for Flushes

Finally, our compiler uses the algorithm Adjust for Flushes shown in Figure[to
adjust for explicit flushes in the program. For line 6 of this algorithm, two flushes
are termed concurrent in our context if there is no execution order enforced
upon them by the program structure. Thus, these may execute in any order, on
different threads, between two synchronization points (barriers) in the program.
To find concurrent flushes, the compiler uses a concurrency analysis for OpenMP
[3] which has been used by other researchers as part of static race detection in
OpenMP programs.

At this point, the compiler has a control-flow graph that reflects the OpenMP
memory consistency model. In this graph, there is a path from a write statement
S1 to a future read statement S2 if and only if the execution of S1 by one thread

Incorporation of OpenMP Memory Consistency 7

Algorithm relax sequential consistency
Input : 1. The OpenMP Control-Flow Graph G containing
explicit synchronization vertices for barrier and flush
and entry and exit vertices for OpenMP directives.
Output : 1. An OpenMP Control-Flow Graph G that models
the Relaxed Memory Consistency of OpenMP.

Start relaxr sequential consistency
1. do VL, L is an OpenMP loop,

2. Remove the back edge from loop entry to loop exit for L.
3. end do

4. do YV, V, is an OpenMP ewit vertex in G

5. if (G contains an edge V, — V,, where

6. Vy is not an OpenMP barrier vertex) then

7. Delete edge V, — V,,

8. Let Vey be a barrier vertex reachable from V,, without intervening barriers
9. Let Vaz be a barrier vertex that strictly dominates V,
10. Add edge V, — V.y to G

11. Add edge Vyz — Vj, to G

12. end if

11. end do

End relax sequential consistency

Fig. 3. Algorithm to adjust the Control-Flow Graph to remove dependencies according
to OpenMP’s Memory Consistency specifications

produces an update to memory that is visible to the execution of S2 by another
thread, as per OpenMP specifications. We refer to this adjusted control-flow
graph as the OpenMP Producer-Consumer Flow Graph (PCFG).

3.5 Proof of Correctness

We now present a formal proof of the correctness of the two algorithms presented
above.

Theorem 1. For an OpenMP Producer-Consumer Flow Graph, a Read state-
ment R is reachable from a Write statement W < the execution of W by one
thread is guaranteed to be visible to the execution of R by another thread accord-
ing to OpenMP specifications.

Proof. We begin by first proving proposition in the forward direction — A Read
statement R is reachable from a Write statement W in the OpenMP PCFG =
the execution of W by one thread is guaranteed to be visible to the execution of
R by another thread according to OpenMP specifications.

Consider two cases.

Case 1 — R occurs after W in program order.

78 A. Basumallik and R. Eigenmann

Algorithm Adjust for Flushes

Input : 1. The OpenMP Control-Flow Graph G for the OpenMP program
created by algorithm relaz sequential consistency.

Output : 1. An OpenMP Producer-Consumer Flow Graph G for the program.

Start Adjust for Flushes
1. do VVy, Vs is a flush vertex in G,
2. do YV}, Vis a flush vertex in G, Vy # V}

3. if (V§ # V; and V} is not reachable from V) then
4. Let S be the flush-set of Vy

5. Let S’ be the flush-set of V

6. if (Vy and V} can be concurrent [3]

7. and SN S’ # @) then

8. Add edge V; — Vf to G

9. end if

10. end if

11. end do

12. end do

End Adjust for Flushes

Fig. 4. Algorithm to adjust the Control-Flow Graph to incorporate dependencies cre-
ated by explicit flushes

In this case, there can be three scenarios — (i) both R and W are in serial regions,
(ii) either R or W is in a serial region and (iii) both R and W are in parallel
regions.

If R and W are both in serial sections and there is a path from W to R, then
the statement is trivially true.

If W is in a serial region and R is in a parallel region, let Er be the entry
vertex for the parallel region that R is in. Fr dominates R and so any path
from W to R must contain Er. Since there is an implicit synchronization at the
beginning and end of each parallel region, Er is dominated by a barrier vertex
which must also be in the path from W to R and thus, the execution of W will
be visible to an execution of R on any thread. Similarly, if W is in a parallel
region and R is in a later serial region, the barrier at the end of this parallel
region must be in the path from W to R and thus the execution of W on any
thread will be visible to the thread executing the serial region that contains R.
If W and R are both in a parallel regions then let Fy be the exit vertex for
the OpenMP construct that W is within. Since Algorithm [B] ensures that the
successor of Eyy is always a barrier vertex, there is always a barrier vertex in
the path from W to R and thus the execution of W will be visible to an execution
of R on any thread.

Case 2 — R occurs before W in program order.

In this case, the path from W to R must contain an edge not present in the
original control-flow graph of the program. Additional edges are introduced by
line 8 in algorithm Adjust for Flushes in Figure @l and by lines 10-11 in algorithm

Incorporation of OpenMP Memory Consistency 79

relax sequential consistency in Figure[3 Since these edges contain vertices which
are either barriers or flush pairs, the execution of W must be visible to an
execution of R on any thread.

We now prove the proposition in the reverse direction — The execution of a
Wrrite statement W by one thread is guaranteed to be visible to the execution
of a Read statement R by another thread according to OpenMP specifications
= R is reachable from W in the OpenMP PCFG.

If W is visible to R on all threads as per OpenMP specifications, then one of
two cases must be true —

Case 1 — R is reachable from W in the original program flow graph.

In this case, there must be an intervening barrier vertex in the path from W
to R since W is guaranteed to be complete before R is started on any thread.
We call this barrier vertex V. The only transformation that deletes edges from
the original control-flow graph is line 7 in algorithm relax sequential consistency
in Figure Bl However, the additional edges introduced in lines 10 and 11 of this
algorithm ensure that paths from OpenMP entry and exit vertices to preceding
and succeeding barriers are not broken. Thus, a path from W to V, and from
V4 to R is unbroken by the two algorithms. Thus, R is reachable from W in the
OpenMP PCFG.

Case 2 — R is not reachable from W in the original program flow graph.

In this case, W must become visible to R because of OpenMP flush directives.
Thus, there must be a flush in the program after W that is reachable from W in
the OpenMP CFG. There must also be a flush in the OpenMP CFG from which
R is reachable. Additionally, these two flushes must be concurrent. However,
if these flushes are concurrent, then line 8 in algorithm Adjust for Flushes in
Figure [will create an edge between them. Thus, R will be reachable from W
in the OpenMP PCFG.

Thus, by combining the two propositions proved above, we get “A Read state-
ment R is reachable from a Write statement W in the OpenMP PCFG < the
execution of W by one thread is guaranteed to be visible to the execution of R
by another thread according to OpenMP specifications.”

3.6 Applications of the OpenMP Producer-Consumer Flow Graph

The OpenMP producer-consumer flow graph is just like a conventional control-
flow graph except that it accurately represents producer-consumer relationships
between writes to and reads of shared data. Thus, this graph can now form the
basis for subsequent dataflow analysis passes for shared variables.

Consider, for example, a typical dataflow analysis pass to find reaching defi-
nitions. Consider again the program snippet shown in Figure [l Let B1 be the
basic block that contains the statement accessing the shared variable ¢ flag in
loop L1 and let B2 be the basic block containing the statement ¢ flag + + after
loop L2. The algorithm Adjust for Flushes shown in Figure [creates a path from
B2 to Bl in the graph and thus, the definition of ¢ flag in B2 would get included
in the list of reaching definitions for the use of ¢ flag in B1.

In our compiler, the OpenMP producer-consumer graph is a key element in a
pass to transform OpenMP programs directly to MPI programs [6]. A summary

80 A. Basumallik and R. Eigenmann

25.

20.
15 nl
o
S
S
]
o
o
» 1o
5
o
124816 124816 124816 124816 12481 124816 124816
cG EP FT LU 1S ART EQUAKE

O Translated OpenMP Bl Hand-coded MPI

Fig. 5. Performance of seven representative OpenMP applications translated to MPI,
compared with their hand-coded MPI counterparts on 16 WinterHawk nodes of an
IBM SP2 system. A key step in the OpenMP to MPI translation is the creation of the
OpenMP Producer-Consumer Flow Graph.

of the performance of this transformation is shown in Figure [0l This pass per-
forms a whole program analysis of accesses to shared variables and communicates
shared data, as it is produced, to all potential future consumers. This analysis
needs to be conservative. Therefore, accurately representing the relaxation of
constraints implied by weak consistency and OpenMP clauses such as nowait
enables performance optimizations by eliminating certain producer consumer
relationships. On the other hand, it includes additional constraints introduced
by flush operations into the dataflow analysis framework, thereby preserving the
correctness of the derived producer-consumer relationships.

4 Related Work

Previous research into the compiler analysis for programs with relaxed consis-
tency models have focused on delay set analysis [7I8/9] to ensure correct execu-
tion of programs. Others have proposed techniques to use the compiler to hide
or abstract the effects of the memory model from the programmer [I0J11] and in
doing so have relied on specialized graph representations such as the Concurrent
Static Single Assignment form to represent parallel programs. Our techniques
do not have to incorporate delay set analysis since the requisite fences or barri-
ers in our program are already present in the form of OpenMP synchronization

Incorporation of OpenMP Memory Consistency 81

statements. Also, rather than modifying the dataflow analysis passes in any way,
our technique modifies the sequential control-flow graph for the program, adding
and deleting edges to incorporate the effects of weak memory consistency and
the additional constraints introduced by OpenMP flushes.

Our work complements recent research to analyze the synchronization struc-
ture of OpenMP programs [3]. To build the PCFG our algorithm starts from
the sequential CFG. A first addition is to incorporate control-flow semantics for
the parallel program to create the OpenMP CFG. This extension has been ad-
dressed in recent work [2/3]. In addition, we consider data flow that results from
cross-thread communication at flush operations and dependences excluded by
nowait type directives using the techniques proposed in this paper. Recent work
on data flow analysis for OpenMP programs [12] has proposed the incorporation
of OpenMP semantics by creating Super Nodes and Composite Nodes in the con-
trol flow graph to encapsulate OpenMP constructs and then use different data
flow equations for these to incorporate OpenMP semantics. In this paper, we
present a different approach that adjusts predecessor and successor relationships
between basic blocks to incorporate OpenMP semantics and thus, we do not
need to introduce any special data flow equations into the framework.

In our work, we use a simple conservative approach for differentiating between
shared and private data. Recent work on autoscoping of data in OpenMP pro-
grams [I3] proposes alternative approaches to accomplish this. Our work has
also benefited from recent efforts to further elucidate the OpenMP memory con-
sistency specifications [I4] and to formalize the OpenMP memory model [15].

5 Conclusions

In this paper, we have presented techniques for incorporating OpenMP memory
consistency semantics into conventional dataflow analysis. Instead of modifying
dataflow analysis in any way, our method is to distinguish between shared and
private data in the program, use the sequential control-flow graph of the program
to perform dataflow analysis for private data, then transform the control-flow
graph into an OpenMP producer-consumer flow graph that reflects the effects
of OpenMP memory consistency and to use this graph to perform data flow
analysis for shared data.

Our transformation has three essential steps - (i) distinguishing shared and
private data, (i7) incorporating relaxed consistency semantics into the control-
flow graph and (iii) incorporating any additional constraints introduced by
the programming model (by flush operations). Thus, our transformations are
broadly applicable for any parallel programming paradigm whose memory con-
sistency model can be specified by (i) how it differentiates shared and private
data, (ii) ordering constraints that are relaxed and (i4¢) additional ordering con-
straints that are introduced.

We use the techniques presented in this paper in the Cetus compiler as part of
a set of transformations to translate OpenMP programs to MPI programs. These
techniques are essential both for preserving the correctness of the translation and
for performance optimization. We believe that these techniques hold promise in a

82

A. Basumallik and R. Eigenmann

broad spectrum of transformations for a variety of parallel programming models
when the memory consistency semantics differ from sequential consistency.

References

10.

11.

12.

13.

14.

15.

. OpenMP Forum. OpenMP: A Proposed Industry Standard API for Shared Memory

Programming. Technical report (October 1997)

. Satoh, S., Kusano, K., Sato, M.: Compiler Optimization Techniques for OpenMP

Programs. In: Proc. of the Second European Workshop on OpenMP (EWOMP
2000) (September 2000)

. Lin, Y.: Static Nonconcurrency Analysis of OpenMP Programs. In: Proceedings of

the first International Workshop on OpenMP (IWOMP 2005) (2005)

. Adve, S.V., Hill, M.D.: A Unified Formalization of Four Shared-Memory Models.

IEEE Trans. on Parallel and Distributed Systems 4(6), 613-624 (1993)

. Lee, S.-1., Johnson, T.A., Eigenmann, R.: Cetus - An Extensible Compiler Infras-

tructure for Source-to-Source Transformation. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 539-553. Springer, Heidelberg (2004)

. Basumallik, A., Eigenmann, R.: Towards automatic translation of openmp to mpi.

In: ICS 2005: Proceedings of the 19th annual International Conference on Super-
computing, Cambridge, Massachusetts, USA, pp. 189-198. ACM Press, New York
(2005)

. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share

memory. ACM Trans. Program. Lang. Syst. 10(2), 282-312 (1988)

. Krishnamurthy, A., Yelick, K.: Analyses and optimizations for shared address space

programs. Journal of Parallel and Distributed Computing 38(2), 130-144 (1996)

. Fang, X., Lee, J., Midkiff, S.P.: Automatic fence insertion for shared memory mul-

tiprocessing. In: ICS 2003: Proceedings of the 17th annual international conference
on Supercomputing, pp. 285-294. ACM Press, New York (2003)

Lee, J., Padua, D.A.: Hiding relaxed memory consistency with a compiler. IEEE
Trans. Comput. 50(8), 824-833 (2001)

Midkiff, S.P., Lee, J., Padua, D.A.: A compiler for multiple memory models. Con-
currency and Computation: Practice and Experience 16, 197-220 (2004)

Huang, L., Sethuraman, G., Chapman, B.: Parallel Dataflow Analysis for OpenMP
Programs. In: Proceedings of the International Workshop on OpenMP (IWOMP
2007) (June 2007)

Lin, Y., Terboven, C., an Mey, D., Copty, N.: Automatic Scoping of Variables in
Parallel Regions of an OpenMP Program. In: Chapman, B.M. (ed.) WOMPAT
2004. LNCS, vol. 3349, pp. 83-97. Springer, Heidelberg (2005)

Hoeflinger, J., de Supinski, B.: The OpenMP Memory Model. In: Proceedings of
the first International Workshop on OpenMP (IWOMP 2005) (2005)
Bronevetsky, G., de Supinski, B.: Complete Formal Specification of the OpenMP
Memory Model. In: Proceedings of the second International Workshop on OpenMP
(IWOMP 2006) (2006)

	Incorporation of OpenMP Memory Consistency into Conventional Dataflow Analysis
	Introduction
	The OpenMP Memory Consistency Model
	Incorporation of OpenMP Memory Consistency into the Dataflow Analysis
	Identification of Shared Data
	Making OpenMP Constructs Explicit
	Relaxation of Sequential Consistency
	Adjustment for Flushes
	Proof of Correctness
	Applications of the OpenMP Producer-Consumer Flow Graph

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

