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This paper presents an overview of automatic program paral-
lelization techniques. It covers dependence analysis techniques,
followed by a discussion of program transformations, including
straight-line code parallelization, do loop transformations, and
parallelization of recursive routines. The last section of the pa-
per surveys several experimental studies on the effectiveness of
parallelizing compilers.

I. INTRODUCTION

The last decade has seen the coming of age of parallel
computing. Many different classes of multiprocessors have
been designed and built in industry and academia, and
new designs appear with increasing frequency. Despite
all this activity, however, the future direction of parallel
computing is not clearly defined, in part because of our
lack of understanding of what constitutes effective machine
organization and good programming methodology.

Developing efficient programs for many of today’s par-
allel computers is difficult because of the architectural
complexity of those machines. Furthermore, the wide vari-
ety of machine organizations often makes it more difficult
to port an existing program than to reprogram completely.
Several strategies to improve this situation are being de-
veloped. One approach uses problem-solving environments
that generate efficient parallel programs from high-level
specifications. Another approach is based on machine-
independent parallel programming notation, which could
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take the form of new programming languages, language
extensions, or just a collection of annotations to an existing
programming language.

Whatever the programming approach, it is clear that
powerful translators are necessary to generate effective code
and, in this way, free the user from concemns about the
specific characteristics of the target machine. This paper
presents an overview of techniques for an important class
of translators whose objective is to transform sequential
programs into equivalent parallel programs. There are sev-
eral reasons why the parallelization of sequential programs
is important. The most frequently mentioned reason is
that there are many sequential programs that would be
convenient to execute on parallel computers. Even if the
complete application cannot be translated automatically,
parallelizers should be able to facilitate the task of the
programmer by translating some sections of the code and
by performing transformations such as those to exploit low
level parallelism and increase memory locality, which are
cumbersome to do by hand but may have an important
influence on the overall performance.

There are, however, two other reasons that are perhaps
more important. First, powerful parallelizers should facil-
itate programming by allowing the development of much
of the code in a familiar sequential programming language
such as Fortran or C. Such programs would also be portable
across different classes of machines if effective compilers
were developed for each class. The second reason is that the
problem of parallelizing a traditional language such as For-
tran subsumes many of the translation problems presented
by the other programming approaches, and therefore much
of what is learned about parallelization should be applicable
to the other translation problems.

There are several surveys of automatic parallelization
[1]-[3] and several descriptions of experimental systems
[4]-[7]. However, this paper is, hopefully, a useful contri-
bution because it presents an up-to-date overview that in-
cludes references to the most recent literature and discusses
both instruction-level and coarse-grain parallelization tech-
niques.
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The rest of the paper is organized as follows. Section
Il introduces dependence analysis, on which many of the
transformations discussed in this paper are based. Section
III discusses the transformations, and Section IV presents a
survey of the published evidence concerning the effective-
ness of automatic parallelization.

We discuss transformations from a generic point of view
and make only a few observations on how those techniques
can be used to generate code for particular machines.
Parallelizers should incorporate an economic model of the
target machine [8], which is used to determine when
a particular transformation is profitable or to select one
from a collection of possible transformations. Except for
the techniques discussed in Section [II-B21) to manage
memory hierarchies and increase data locality, nothing is
said in this paper about memory management and data
allocation. The focus is on techniques to detect parallelism
and to map the code to computational elements. However,
memory management and allocation is a very important
topic, especially for distributed-memory and hierarchical
shared-memory machines, and the reader should keep in
mind that memory issues may have a determinant influence
on the translation strategy.

II. DEPENDENCE

An ordinary program specifies a certain sequence of
actions to be performed by the computer. A restructuring
compiler tries to find groups of those actions such that
the actions in a group can be executed simultaneously,
two groups can be executed independently of each other,
the executions of two groups can be overlapped, or a
combination of these execution schemes can take place.
Any scrambling or grouping of the original sequence of
actions is permissible as long as the meaning of the
program remains intact. To ensure the latter, the compiler
must discover the underlying “dependence structure” of
the program. This structure is determined by the different
actions in the program reference (read or write) memory
and by the control structure of the code. The influence
of the control structure of the program on the dependence
structure is represented by means of the conrrol dependence
relation which is discussed in Section II-B. The influence
of the memory references on the dependence structure is
represented by the data dependence relation. The analysis
of the latter, which is discussed next, consists of finding
out the details of the pattern in which memory locations
are accessed by the different actions. The data-dependence
structure thus discovered at compile time is usually only
an approximation to the true data dependence structure,
but the discovered structure must always be conservative
in the sense that it includes all the constraints of the true
structure.

We will restrict the discussion to single and double
loops. Most of the dependence definitions given for a
single loop can be trivially generalized to more complicated
programs. A few concepts are meaningful only in the case
of multiple loops and they are defined for double loops.
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Further generalizations are straightforward. Similarly, in the
area of dependence computation there is a jump from single
to double loops, while it is relatively easy (conceptually) to
move from a double to a multiple loop. An imperfectly
nested loop can be handled much the same way as a
perfectly nested loop. A piece of code that is not within
a loop can also be accommodated without any difficulty.
Most of the variables in our examples are array elements.
However, scalars can be covered by pretending that they
are single-element arrays.

A. Data Dependence in a Single Loop

The whole section is devoted to one simple, albeit
artificial, example involving a single loop containing three
assignment statements. The statements are chosen so that
several aspects of data-dependence analysis can be illus-
trated. An assignment statement has the form

S: z=F

where « is a variable and E is an expression. The output
variable of S is «x, and the input variables of S are the
variables in F.

Example I: Consider the single loop

L: dol = 2,200

S A(I) = B(I)+C()

T: B(]+2)=A(171)+C(1—1)

U: A(I+4+1)=B@+I+3)+1

enddo

The index variable of loop L is I, and the index values are

the 199 integers 2,3, - - -, 200 that I can take as its value, If
H(I) denotes the body of the loop, then each index value i
defines an instance H (i) of the body, which is an ireration
of L. In the sequential execution of L, the 199 iterations are
executed in the increasing order of the index values: T =2,
3,-+-, 200. In each iteration, the corresponding instances of
statements 5, T, U are executed in that order. The first four
iterations of the loop, corresponding to the values 2, 3, 4,
5 of the index variable 7, are shown below:2

S(2):  A(2) = B(2) + C(2)
T(2) . B(4) = A1) + C(1)
U@2): A(3) = B(T) + 1

S(3):  A@B) = B(3) + C(3)
T(3): B(5) = A(2) + C(2)
U3):  A(4) = B(9) + 1

SM):  A(4) = B(4) + C(4)
T(4): B(6) = A(3) + C(3)
U4):  A(5) = B(11) + 1

2The notation S(1) denotes the instance of the statement S for the index
value I = /.
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S(5):  A(5) = B(5) + C(5)
T(5): B(7) = A(4) + C(4)
U():  A(6) = B(13) + 1

We can make a number of observations:

1. The output variable of the instance S(2) of statement
S is an input variable of the instance T'(3) of state-
ment T, and the value computed by S(2) is actually
used by 7T'(3). This pattern is repeated many times.
In general, the value computed by the instance S(%)
of S is used by the instance T(j) of T, whenever @
and j are two values of the index variable I such
that j — ¢ = 1. We say that the instance T'(j) is
flow dependent on the instance S(i), that statement
T is flow dependent on statement S, and that the
output variable A(I) of S and the input variable
A(I — 1) of T cause a flow dependence of T on
S. This flow dependence is uniform since there is a
constant (dependence) distance, namely 1, such that
the instance T'(¢ + 1) is always dependent on the
instance S(i) whenever ¢ and ¢ + 1 are values of 1.

2. The output variable B(I + 2) of statement 7" and the
input variable B(I) of statement S cause a uniform
flow dependence of S on T with distance 2.

3. The output variable of T(5) is also an input variable
of U(2), but the value of B(7) used by U(2) is the
one that existed before the program segment started,
and not the value computed by T'(5). This makes the
instance T'(5) antidependent on the instance U(2),
and statement T antidependent on statement U. The
input variable B(2I + 3) of U and the output vari-
able B(I + 2) of T cause this antidependence. The
other pairs of instances of the form (U(:),T(j))
such that T(j) depends on U(z), are (U(3),T(7)),
(U(4),T(9)), (U(5),T(A1)),---, (U(98),T(197)).
Unlike the previous two cases, we have a number
of possible distances: 3, 4, 5, 6,---, 99. The mini-
mum distance is 3 and the maximum 99; here the
dependence is not uniform.

4. For 2 < i < 199, the instance U(i) of U and the
instance S(: + 1) of S both compute a value of the
variable A(i + 1), such that the value computed by
S(i 4 1) is stored after the value computed by U (i).
We say that the instance S(i + 1) is output dependent
on the instance U(¢), and that statement S is output
dependent on statement U. The output variables of
the two statements cause this output dependence. This
dependence is uniform with the distance 1.

5. The fourth kind of data dependence is caused by a pair
of input variables; it is called inpur dependence. Input
dependence is a useful concept in some contexts (e.g.,
memory management), but will not be considered
further in this paper. We just mention that there is
an input dependence of statement 7' on statement S
because S(z) and T'(¢ + 1) both read C(2).

O
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Fig. 1. Statement dependence graph of loop in Example 1.

By data dependence we will mean any one of the
three particular types of dependences: flow dependence,
antidependence, and output dependence. These are denoted
by the symbols &f, 62, and 6°, respectively. The symbol
delta stands for any type of dependence. In Example 1, we
have: $6¢T, T 'S, U 62T, U 6° S. The relation S 6 T is
read “T is flow dependent on S, and the other relations
are read similarly. These relations are represented’ by the
statement dependence graph of the loop L in Fig. 1. The
statements forming a cycle in a statement dependence graph
are said to constitute a recurrence. Note that there is a
recurrence in our example formed by the statements S and
T.

B. Data Dependence in a Double Loop

The basic data-dependence concepts were introduced in
the previous section in terms of a single loop. Those same
concepts can be extended to a general loop nest, but while
some of them have obvious generalizations, others do not.
In this subsection, we focus on the latter and show how
certain things will change as we move from a single to a
double loop. The extension to a more general nest of loops
then becomes routine.

Example 2: Consider the double loop (L, La):

L1 :do I 1 = 0, 4
Lo : do I, = 0,4
S: A(Il+1,fz)=B(II,I2)+C(11,IQ)
T: B(Il,]2+1)=A(Il,12+1)+1
enddo
enddo

The index vector of (Li,Le) is I = (I1,1I3). The
index values or iteration points are the values of L
(0,0),(0,1),---,(4,3),(4,4). Each iteration point defines
an instance of the body of (Lj, L2), which is an iteration
of the double loop, and the set of all iteration points is the
iteration space (Fig. 2).

In the sequential execution of the program, the iterations
are executed in the increasing lexicographic order of I, that
is, the iteration corresponding to an index value (i1,%2)
is executed before the iteration corresponding to an index
value (j1, o) if and only if either 1) 4; < j1, 0r2) i1 = 5
and iy < jo. In terms of Fig. 2, the columns are processed

3For quick recognition, we sometimes cross an antidependence edge
and put a small circle on an output dependence edge.
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Fig. 2. Iteration dependence graph of loop in Example 2.

from left to right, and the points in a given column are taken
bottom up. Some of the iterations of the double loop are
shown below in the order in which they are to be executed.

S(0,0): A(1,0) = B(0,0) + C(0,0)
T(0,0): B(0,1) = A(0,1) + 1
S(0,1): A1) = B0, 1) + C(0. 1)
T(0,1): B(0,2) = A(0,2) + 1
S(0,2) 1 A(1,2) = B(0.2) + C(0.2)
T(0.2): B(0,3) = A(0,3) + 1
S(L.0): A(2.0) = B(1.0) + C(1.0)
T(1,0): B(1,1) = A(1.1)+ 1
S(L1): A(2.1) = B(1,1) + C(1.1)
T(1,1): B(1,2) = A(1.2) + 1
S(1,2): A2.2) = B(1.2) + C(1,2)
T(1.2): B(1,3) = A(L3) + 1

The ideas of flow, anti-, and output dependence can easily
be extended to the double-loop case, and here the two
statements S and T are flow dependent on each other. To
see the dependence of T on S, we need only look at the
instance pair (S(0,1),7(1,0)). Both instances reference
the location A(1.1), and T(1,0) reads the value written by
5(0,1). There are more instance pairs with this property: an
instance of T of the form T'(i; + 1,y — 1) always depends
on an instance of S of the form S(iy,i5). The (dependence)
distance in this case is a constant vector, namely (1, —1),
and the dependence is uniform.

Consider now the dependence of S on T. If (41,72) and
(41,42 + 1) are index values of the double loop, then the
instance T'(iy,42) of T and the instance S(iy.ig+ 1) of S
both reference the location B(iy, is + 1), and S(41,i9 + 1)
reads the value written by T(i1,iy). Again, we have a case
of uniform dependence with a distance vector (0.1).

The dependence of T on S is carried by the outer loop L,
in the sense that whenever an instance of 7 depends on an
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Fig. 3. Statement dependence graph of loop in Example 2.

instance of S, they must belong to two different iterations of
Ly (e.g., S(0,1) and T(1,0), §(2,2) and T(3,1)). Another
way of saying this is that 7' depends on S at level 1. This is
reflected in the dependence distance (1,—1) in that its first
component is positive. In contrast, the dependence of S on
T'is carried by the inner loop L, (and we say that it is a
level-2 dependence), since an instance of S will depend on
an instance of T only if they belong to the same iteration of
Ly, but two different iterations of Ls. This information is
contained in the distance vector (0,1): Its first component
is zero and the second component is positive,

Fig. 3 shows two statement dependence graphs for the
double loop (L1, Ly). The first graph has dependences at
all levels; the second does not have the level-1 dependence.
There is a recurrence in the first graph, but none in the
second graph, that is, the recurrence disappears when we
focus on the loop nest for a fixed iteration of the outer loop.

We may define the relation of dependence between iter-
ations in an obvious way. Let H(I,.1I5) denote the body
of the double loop. Then, the iteration H(1,0) depends on
the iteration H(0. 1), since the statement instance T(1,0)
depends on the statement instance 5(0,1). The complete
iteration dependence graph is shown in Fig. 2. ad

Dependence distance vectors may be difficult to compute
in some cases, and some loop transformations do not need
the complete knowledge of distance vectors. The direction
vector of a distance vector is the vector of signs of the
components. For example, the direction vector* of the
distance vector (2. -5) is (1. —1), since 1 = sign(2) and
—1 = sign(->5); and the direction vector of (0,2) is
(0.1). In Example 2, the direction vectors corresponding
to the two distances, (1. —1) and (0,1), are the distances
themselves.

For each loop shown in this paper, we have assumed a
stride of 1. Because the stride is positive, a distance vector
(and hence a direction vector) is always (lexicographically)
nonnegative. For single loops, a distance is greater than or
equal to zero in the usual sense. If (d;. dz) is a distance
vector for a double loop, then one of the three conditions
holds: 1) dy > 0; 2) d; = 0 and ds > 0; and 3)

*Many authors use the symbols <, >, and = to denote the positive,
negative, and zero signs, respectively.
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d; = dy = 0. This set of conditions can be extended to
more complicated loops in an obvious way. For dependence
between iterations, the distances (and directions) are strictly
(lexicographically) positive, since any dependence within a
given iteration is then ignored.

Now, suppose that a loop L has a stride d where d
is any nonzero integer. Define a new variable r by r =
(I — p)/d where p is the lower limit of L. Then, the
iterations of L, which are labeled by the index values
p,p+ d,p+ 2d,---, can also be identified by the values
0,1,2,--- of r. If we change the index variable of the
loop to r, and replace each occurrence of I in it with the
expression p + rd, then we would get a loop with stride 1.
This is the transformation of Loop Normalization; it used
to be popular in the early days of vectorization, but has
fallen out of favor in recent years. However, we do not
need full-scale loop normalization. By using the variable r
instead of the index variable I in dependence analysis, we
can keep the same methods that are applicable to the stride-
1 loops, and maintain the requirement that distance vectors
be nonnegative. Whenever needed, the results would have
to be translated back in terms of I.

C. Data-Dependence Computation

For data-dependence computation in actual programs, the
most common situation occurs when we are comparing two
variables in a single loop and those variables are elements
of a one-dimensional array, with subscripts linear (affine)
in the loop index variable, as in the following model:

L: do I =p,q
S: X(axI+ag)=---
T: ---=---X(bxI+by)---
enddo

Here, X is a one-dimensional array; p, ¢, a, ap, b, and by are
integer constants known at compile time; and a, b are not
both zero. We want to find out if the output variable of
statement S and the input variable of statement T' cause a
flow dependence of T on S, or an antidependence of S on
T, or both.’

The instance of the variable X (al + ag) for an index
value I =4 is X (ai + ao), and the instance of the variable
X (bI + bg) for an index value I = j is X (bj + bo). These
two instances will represent the same memory location if
and only if

ai—bj =b0—a,0. (1)

Since 4 and j are values of the index variable I, they must
be integers and lie in the range:

pSiSq}

. 2
p < J < gq @

Suppose (%, j) is an integer solution to (1) that also satisfies
(2). If i < j, then the instance S(z) of S is executed before
the instance 7'(j) of T in the sequential execution of the

5The types of data dependences or the fact that the statements are shown
to be distinct are not important for this analysis.
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program. Hence, S(¢) first puts a value in the memory
location defined by both X (ai + ao) and X (bj + bo), and
then T(j) uses that value. This makes the instance T'(5)
flow dependent on the instance S(:), and the statement T
flow dependent on the statement S. Similarly, if ¢ > j, then
S(3) is antidependent on T'(j) and S is antidependent on
T. If i = j, then we get a flow dependence of T on S,
since S(i) is executed before T'(¢) for each index value .

The problem then is to find the set of all (integer)
solutions (4,7) to (1) satisfying (2), and then partition
the solution set based on whether i < 7, ¢ > j, or
i = §. Equation (1) is a linear diophantine equation in two
variables. The method for solving such equations is well
known and is based on the extended Euclid’s algorithm [9].
Let g denote the greatest common divisor (ged) of a and
b. Then (1) has a solution if and only if g (evenly) divides
by — ag. Assume that g does divide by — ag. (Otherwise,
there is no dependence of T on S, nor of S on T'.) Then,
there are infinitely many solutions (2, j) to (1), all given by
a formula (the general solution) of the form:

(4,3) = ((b/9)t + i1, (a/g)t + 1) €

where
(41,51) = ((bo — a0)io/g, (bo — a0)jo/9)

ig, jo are any two integers such that aio — bjo = g, and ¢ is
an arbitrary integer. The extended Euclid’s algorithm finds
the ged g and such a set of integers 4o, Jo-

Note that the functions i(t) = (b/g)t + ¢ and j(t) =
(a/g)t + 71 tepresent straight lines (Fig. 4). If a = b # 0,
then the two lines are parallel [Fig. 4(a)]. In this case, the
two components of any solution (7,7) are related in the
same way, that is, for all solutions (%,j), exactly one of
the foliowing holds:

it < g (when 1; < ]1)
i > j (when i1 > j1)
i = j (when i; =7).

Thus, the two variables X (al + ao) and X (b] + bo) of S
and T can cause a dependence between S and T in only
one direction. Also, if a dependence exists, it is uniform
and the dependence distance is |j; — %1|. To decide if there
is a dependence in any direction, we must test to see if there
is an integer t such that i, j, as given by (3), satisfy (2).

Suppose now that @ # b. The straight lines i(t) =
(b/g)t + i1 and j(t) = (a/g)t + j1 now intersect. For
definiteness, we will consider only the case a > b > 0 as
shown in Fig. 4(b). Let £ denote the value of ¢ at the point
of intersection. If £ is an integer, then there is an integer
solution (i, ) to (1) such that ¢ = j. For all integer values
of t less than £, we get solutions (¢, 7) such that i > j, and
the solutions for which i < j are obtained for values of ¢
greater than £. So far, we have ignored the constraints of
(2). They will define a range for ¢. If that range contains an
integer ¢ greater than £, then the instance 7'(j(t)) depends
on the instance S(i(¢)) and therefore statement T depends
on statement S. Each integer ¢ greater than £ will give such

215



(iy-J1)

@a=b>0

Fig. 4. Graphs of functions #(f) and J(t).

a pair of statement instances. Similarly, an integer less than
€ in the range of ¢ indicates that S depends on 7. If £ is
an integer and is in the range of ¢, then T'(¢) depends on
S(€). The dependence (in either direction) in this case is
not uniform, since the value of |j — i| is not fixed.
We will illustrate the above process by a simple example.
Example 3: Consider the single loop
L. do I = 2,200
S: X(@3xI-5)=B()+1
T: CU)=X@2«I+6)+DI-1)
enddo

and compare the two elements of the array X. The dio-
phantine equation here is

3i—2j =11
and the constraints are
2 <14<200,2 <5 <200.

The ged of 3 and 2 is g = 1, and we have 3x1 — 2x1 = 1,
so that (1,1) is a choice for (4o, jo). The general solution
to the equation is

(i(t), §(t)) = (2t + 11,3t + 11)

where ¢ is any integer. From the inequality 2 < 2¢ + 11 <
200, we get —9/2 < ¢ < 189/2, or —4 < t < 94 since ¢
is an integer. From the inequality 2 < 3¢ + 11 < 200, we
get —3 <t < 63. Since ¢ must satisfy both inequalities, we
take the intersection of the two ranges: —3 < t < 63.

The point of intersection of the twp tines i(¢) = 2¢ + 11
and j(t) = 3t + 11 is given by the value ¢ = 0, which is
in our range. For 1 < ¢ < 63, we have i(t) < j(¢), and for
t = —3,-2,-1, we have i(t) > j(t). Thus, statement T is
flow-dependent on statement S, and the corresponding set
of instance pairs is

{(S(2t+11),T(3t +11)) : 0 < t < 63}
= {($(11),T(11)),- - -, (S(137),7'(200))}.

216

i>j i<j

AR

b)a>b>0

The dependence distances are {t : 0 < ¢ < 63}. Also,
statement S is antidependent on statement 7 and the
corresponding set of instance pairs are
{(T(3t+11),5(2t +11)) : =3 <t < —1}
= {(T(2).(5)).(T(5). 8(7)), (T(8), S(9))}.
The dependence distances are {—t : =3 < ¢t < —1} or
{3,2,1}. |
Dependence information in a multiple-loop situation can

often be computed by repeated applications of the technique
explained in the above example.

Example 4: In the double loop

Ly doI; = 1,100
LQZ do 12 = 0, 200
S: X(3*]1—5,2*[2+1):B(I)+1
T: C(I) = X(21+6,I,—2)+ D(I—1)
enddo
enddo

if we compare the two elements of X, we will get two
equations (one for each subscript):

3ip — 2j, = 11 4)
2iz — jo = =3 5)

where (i1,142) and (j;. j2) denote values of the index vector
(11 y 12)

Note that (4) and (5) have no variables in common. The
constraints for (4), namely 1 < i; <100and 1 < 71 <100,
and the constraints for (5), namely 0 < i, < 200 and
0 < j2 <200, also do not have any variables in common.
Thus, we can separately process (4) with its constraints and
(5) with its constraints. We can find the set of all solutions
((41,42), (41, J2)) to the system of equations, and also the
partition of the solution set into subsets based on the signs
of j1 — 41 and j» — 25. The details are omitted. O

When subscript functions and/or loop limits are more
complicated, the method described in the above two ex-
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amples will also become more complicated. We will now
illustrate an approximate method of data-dependence testing
that parallelizing compilers often use.
Example 5: Consider the double loop

Llf do Il = 17100
Lz: do 12 = O, 100

S X(2xI1 +3xI, - 12) = B(I) + 1

T: C(I) = X (31 +1;+21)+ D(I-1)

enddo
enddo

Suppose that we want to find out if statement 7' depends
on statement S at level 1. Comparing the elements of X,
we get the equation

2i1 — 371+ 3i2 — jo =33 6)

where (i1,i2) and (j;,72) are two values of (Iq,[3).
Merging the inequality ¢; < j; with the constraints derived
from the loop limits, we get the following system of
inequalities:

1 < 44 £ jh-1

2 < 5 £ 100

0 < 23 < 100 &
0 < jo» < 100.

The extreme values of the left-hand side of (6) under these
constraints are found to be —398 and 296. Since 33 lies
between these two values, the intermediate value theorem
of advanced calculus guarantees a set of real numbers
11,1%2,J1, j2 that satisfy (6) and (7). From this we assume
that there is probably a set of integers satisfying (6) and
(7). In fact, such a set is (1,42, 41,72) = (0,14,1,6), and
there are others. Thus, 7" does depend on S at level 1. [

The approximate method illustrated above can also be
applied when we are comparing two elements of a mul-
tidimensional array. In this case, we treat separately each
equation arising from a corresponding pair of subscripts.
This adds another element of approximation in that we only
know whether there are separate real solutions to individual
equations satisfying the constraints, not whether there is
a real solution to the system of equations satisfying the
constraints.

As mentioned earlier, a linear diophantine equation [such
as (6)] has an (integer) solution iff the gcd of the coefficients
on the left-hand side (evenly) divides the right-hand side.
This fact can sometimes be used to settle a data-dependence
question; it is called the gcd test. When the gcd does divide
the right-hand side, the test is inconclusive. In our example
above, the ged of the coefficients of (6) is 1, and 1 divides
33, so that we know that (6) has an integer solution. But, it
is still unknown whether or not (6) has a solution satisfying
(7). There is also a generalized gcd test that works for a
system of linear diophantine equations [10].

The exact method of data dependence computation illus-
trated in Examples 3 and 4 is described in [11], [12], and
[10] The approximate method of Example 5 is described in
[13], {31, [10], and [14]. The approximate method described
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here is a very simple example of a linear programming
problem. We did not have to use any general algorithm (like
the simplex method, for example) since the feasible region
is so simple that the corner points are obvious. Using such a
general algorithm, however, we can extend this approximate
method to handle the most general linear case, where the
array is multidimensional and the loop limits are arbitrary
linear functions of the appropriate index variables. If we
go one step further and use a general integer programming
algorithm (Gomory’s cutting plane method, for example),
then the approximate method will become an exact method.
However, it has been argued that such a general algorithm
should not be included as part of a data-dependence test in
the compiler, based on the following empirical facts:

1) The subscripts seen in real programs are usually very
simple.

2) In a typical sequential program, the compiler must
test for data dependence a large number of times.

3) Any known general integer programming method is
time consuming.

A number of data-dependence tests have been proposed
in recent years with the goal of extending the scope
and/or accuracy of the basic methods illustrated above,
without incurring the complexity of a general linear/integer
programming algorithm. The Fourier-Motzkin method [15]
of elimination has been used in many of those tests in
place of the simplex or the cutting plane method. This
method of elimination is simple to understand, but it is
not a polynomial method. It can be applied by hand to a
small system, but can be quite time consuming for problems
in many variables [15]. For a large system, the simplex
method is expected to be much more efficient. Also, the
elimination method decides if there is a real solution to a
system of linear inequalities; it cannot say whether or not
there is an integer solution. In fact, the technique illustrated
in Example 5 can be derived from elimination.

The A-test [16] is an approximate test that tries to
decide if there is a real solution to the whole system
of data dependence equations satisfying the constraints. It
assumes that no subscript tested can be formed by a linear
combination of other subscripts.

The I-test [17] combines the approximate method of
Example 5 and the ged test. It isolates the case in which
the approximate method is exact, and therefore can decide
if there is an integer solution in that case. It is applicable
when the array is one dimensional, and the coefficients of
the data-dependence equation are “small” in a sense (at
least one coefficient must be £1).

The §2-test [18] uses an extension of the Fourier-Motzkin
method to integer programming. Although its worst-case
time complexity is exponential, it is claimed to be a
“fast and practical method for performing data dependence
analysis.”

Two recent papers, [19] and [20], describe practical
experiences with sets of data-dependence testing algorithms
actually used by the authors. Brief descriptions of several
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tests and a large number of references on data-dependence
analysis can be found in [20].

The presence of subroutine or function invocations
raises some important practical issues in relation to data-
dependence analysis. One simple solution is to expand
inline (or integrate) the subroutine or function [21], and
then perform dependence analysis on the resulting program.
The major technical difficulty in this case is that it is
necessary to reflect in the inlined code the effect of
aliasing between formal and actual parameters. And the
main drawback is that the size of the resulting code could
become unmanageable if all the subroutines are expanded.
For this reason, several other techniques for interprocedural
data dependence analysis have been developed. For lack
of space we cannot describe them in this paper, but the
reader is referred to the papers by Cooper and Kennedy
[22], Triolet er al. [23], Burke and Cytron [24], and Li
and Yew [25], which describe some of the better-known
techniques.

D. Control Dependences

As mentioned above, the control dependence relation
represents that part of the control structure of the source
program that is important to determine which transfor-
mations are valid. The notion of control dependence has
been discussed by several authors including Towle [26]
and Banerjee [11]. The definition that is most frequently
used today is that of Ferrante er al. [27]. They assume
control-flow graphs with only one sink, that is, a node
with no outgoing arcs. Clearly, all control-flow graphs can
be represented in this form. In such a graph, a node Y
postdominates a node X if all paths from X to the sink
include Y. A node T of a control-flow graph is said to be
control dependent on a node S if 1) there is a path from S
to T' whose internal nodes are all postdominated by T (a
path of length zero trivially satisfies this requirement); and
2) T does not postdominate S. Intuitively, the outcome of
S determines whether or not 7 executes.

Example 6: Consider the following statement sequence:

S : if A # 0 then

T : C=C+1

U : D=C/A
else

V. D=C
end if

W . X=C+D

In this sequence, the statements 7', U, and V are control
dependent on the if statement S, which means that these
assignment statements should not be executed until the
outcome of S is known. ]

Control dependences can be transformed into data depen-
dences, and in this way the same analysis and transforma-
tion techniques can be applied to both. The transformation
proceeds by first replacing the if statement at the source of
the dependence with an assignment statement to a Boolean
variable, say b. Next, b is added as an operand to all the
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statements that are control dependent on the if as illustrated
in the following example.

Example 7: The code sequence of the preceding example
can be transformed into:

S : b=[A#0]

T: C =C+1whenbd
U D = C/A when b
V. D = C when not b

W X=C+D
Here, the operator when indicates that the expression to
its left is evaluated and the assignment performed only
if the boolean expression to its right is true. After the
transformation, the control dependences of T, U, and V

on S become flow dependences generated by the variable
b. O

The previous transformation from control to data depen-
dence was used in Parafrase [4], an experimental paralleliz-
ing compiler. The transformation is described by Banerjee
[11} and by Allen and Kennedy [28].

In the recent past, there have been several intermediate
language proposals that can be used to represent both
control and data dependences in a consistent and con-
venient manner. The reader is referred to the papers by
Ferrante et al. [27], Pingali et al. [29], and Girkar and
Polychronopoulos [30] for examples of those intermediate
languages.

III. PROGRAM TRANSFORMATION

In this section we discuss a collection of parallelization
techniques, most of which are either based on dependence
analysis or are designed to change the dependence structure
of the program to increase its intrinsic parallelism. We
cover in detail the static parallelization of two classes of
sequential constructs that are typical of Fortran programs:
acyclic code in Section III-A and do loops in Section HI-
B. A topic not covered in this survey is the parallelization
of while loops. The reader is referred to the papers by
Wu and Lewis [31], and Harrison [32] for parallelization
techniques that apply to this type of construct. In Section
III-C we discuss program transformations that postpone the
decision of what to execute in parallel to execution time.
Finally, in Section III-D we discuss translation techniques
to deal with pointers and recursion. These two issues
were originally studied in connection with languages for
symbolic computing such as C and Scheme, but it is
important to say a few words in this paper on these
topics because the recent Fortran 90 standard includes both
pointers and recursion.

A. Parallelization of Acyclic Code

We define acyclic code as a sequence of statements
whose control-flow graph is acyclic. The components of
the sequence could either be simple statements, such as
assignments and if statements, or compound statements,
such as loops and sequences of statements. The type
of component on which the translator should operate is
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Fig. 5. Dependence graph of statement sequence in Example 8.

determined by the granularity of the parallelism that is
appropriate for the target architecture. Thus, superscalar
and VLIW processors can exploit effectively fine-grain
parallelism, and therefore their translators operate only
on simple statements. On the other hand, if the target
architecture is a conventional multiprocessor, it is better for
the translator to operate on compound statements because of
the overhead involved in starting and coordinating parallel
code.

Acyclic code parallelization is done by partitioning the
statements into subsets that can be executed in parallel
with each other. There is a total order associated with each
subset. Synchronization instructions should be inserted in
such a way that the order implied by the data and control
dependences is guaranteed to be followed during execution.
The parallel code resulting from acyclic code will be
represented below by means of the cobegin-coend construct
[33], and the post and wait synchronization primitives,

Example 8: Consider the following sequence of state-
ments

Sll A=1

S ¢ B=A+1
S3 : C=B+1
Sy : D=A4A+1
552 E=D+B

From the dependence graph in Fig. 5, it can be seen that
the following is a valid translation of the previous sequence

Sl A = 1
cobegin
Sy : B=A+1
post (e)
Ss : C=B+1
I
Sy D=A+1
wait (e)
Ss : E=D+B
coend

Notice that the dependences $;655, 51684, 2683, and
54085 are enforced by the sequentiality of the code between
the || separators, and the dependence S36S; is enforced by
a synchronization operation. 0

Parallel code generation from acyclic code is relatively
simple once the partition or schedule has been chosen.
However, finding a good schedule is in general more
difficult. In fact, it is well known that the general problem of
finding an optimal schedule is NP-hard [34] and, therefore,
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compile-time scheduling algorithms are usually based on
heuristics.

1) Coarse-Grain Parallelization: When the target ma-
chine is a conventional multiprocessor, one objective of
the acyclic code parallelization techniques is to generate
relatively long sequential segments of code or threads to
overcome the overhead. For this reason, the parallelization
techniques usually operate on compound statements such
as loops, basic blocks, and sequences of these two.
Furthermore, it is sometimes better to leave some of the
scheduling decisions to the run-time system, especially
when the statement execution time cannot be estimated
at compile time [35]. In this case, it may be profitable
to generate more parallel components than processors to
enhance the load balance between processors and, as a
consequence, decrease execution time.

It is not always convenient to generate a pair of synchro-
nization operations for each dependence relation. This naive
approach usually leads to the generation of unnecessary
operations [36] because two statements may be ordered
by more than one collection of dependences. Avoiding
redundant control and data dependences may reduce not
only the number of synchronization operations, but also
the complexity of the Boolean expressions in some of
the resulting if statements. Techniques to avoid redundant
dependences in acyclic code have been studied by Kasahara
et al. [37] and Girkar and Polychronopoulos [38].

2) Instruction Level Transformations—Code Compaction:
The great importance of the techniques for the extraction of
instruction-level parallelism arises from today’s widespread
use of superscalar and VLIW processors and from the
difficulty associated with the explicit parallel programming
of such machines. Programs for such multifunctional
machines may be conceived as a sequence of labeled
cobegin-coend blocks, called macronodes henceforth. The
macronode may contain any number of components
(including zero), each representing an arithmetic or logical
operation. One of the components of a macronode is
always an if-tree whose leaves are goto statements and
whose outcome determines which macronode executes
next. The arithmetic and logical operations are represented
by assignment statements. In a well-formed macronode no
variable is written by more than one assignment statement
or written by one component and read by another. In
other words, the components of a macronode have to be
independent because they are executed in parallel with each
other. Furthermore, only one goto statement is executed
per macronode. The transfer of control caused by the goto
statement takes place only after all the operations inside
the macronode have completed. The rest of this section
discusses transformations on sequences of macronodes that
rearrange operations and if statements to shorten or compact
the program graph and thereby speed up execution.

3) Trace Scheduling: Early instruction-level paralleliza-
tion techniques confined their activities to basic blocks.
Trace scheduling was developed by Fisher [39] and was
the first technique to operate across conditional jumps
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M:cobegin
Sill e |l Sn

[
if ...
... goto N

coend
N:cobegin
ST e IESEH e 11 S
I

if ...
coend

Fig. 6. The move-op elementary transformation.

and jump targets enhancing in this way the process of
parallelization by increasing the length of the sequence to
be parallelized. Trace scheduling is discussed in detail by
Fisher et al. [40], Ellis [41], and Colwell er al. [42]. A
formal definition of trace scheduling and discussions of
its correctness, termination, and incremental updating of
dependence information is presented by Nicolau [43].

Trace scheduling uses information on the probability
that the program would follow a given branch of a con-
ditional jump®. The most probable path or trace through
the code is selected and parallelized subject only to the
restrictions imposed by the data dependences. Conditional
jumps encountered along the traces are allowed to move
like any other operations. In cases where control enters
or leaves the trace, the motion of operations across basic-
block boundaries may result in incorrect results. To remedy
this situation, a “recovery” code is introduced at each entry
and exit point whenever such motion takes place so that
all operations that executed in the original program (on
a corresponding path) will also execute in the compacted
program. The process then repeats by choosing the next
most likely (nonoverlapping) trace and compacting it. This
new trace may include some of the recovery code produced
in processing the previous trace and may in turn generate
more recovery code.

Trace scheduling is intrinsically designed around the
assumptions that conditional jump directions are statically
predictable most of the time. An early technique that
generalized trace scheduling by enhancing its ability to deal
with conditional jumps, SRDAG compaction, is described
by Linn [44].

Another technique is region scheduling, introduced by
Gupta and Soffa [45]. It uses the program dependence graph
to perform large, nonlocal code rhotions in a relatively
inexpensive way once the dependence graph has been
computed. A drawback of this method is that the region
transformations are not defined at the instruction level, and
some of the finer-grain transformations achievable at that
level are difficult to capture within the region approach.

SThese probabilities may be computed heuristically, or based on profil-
ing information.
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M':cobegin
Stll e IS Il 87

I
if ...

... goto N/
coend

N’: cobegin
Syl e 1SS I e 11 S

if ...
coend

Also, the motion of regions as a whole may create more
code duplication than strictly necessary.

Patt and Hwu [46] have designed an architecture, HPS,
that attempts to utilize small-scale data-flow techniques
(within a window of limited size) to dynamically dis-
patch operations, while utilizing instruction-level compiler
technology to reorder the code to increase the number
of independent instructions within each window. More
recently, Chang er al. [47] studied means of improving
commercial architectures (e.g., RS6000,i860) to make better
use of instruction-level parallelization techniques.

4) Percolation Scheduling: Percolation scheduling was
developed by Nicolau from the work on trace scheduling
[481,[49]. It is based on three elementary transformations
that can be combined to create an effective set of
parallelizing transformations. These transformations are
driven by heuristics that may depend on the target machine
and the nature of the source programs. The three elementary
transformations are move-op, move-cj, and unify. Move-
op, illustrated in Fig. 6, moves an assignment, S;, from
a macronode N in the control-flow graph to a predecessor
node M—subject of course to data dependences. Move-
¢j, illustrated in Fig. 7, moves any subtree of the if-tree,
say if-subtree-X, from a macronode N to a predecessor
macronode M. In the transformed code, macro nodes Nt
and Nr are the targets of the true and false descendants of
node if-subtree-X, respectively.

Unify, illustrated in Fig. 8, deals with the motion of
identical operations that may occur in multiple successors
of a macronode M and that could only be hoisted into A
together, and merged into a single copy of the operation. To
understand the need for such a transformation, consider the
operation ¢ := i + 1. If it is present in several branches,
moving a single copy of it to macronode M from any
one of its successor blocks is illegal, as i could then be
incremented twice on one of the alternate paths through
M. However, removing all copies of the operation from
successors of M and placing a single copy in M achieves
the desired motion. Notice that in the three transformations
Just described the transformed versions of the successor
macronodes are renamed and the unmodified version may
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M: cobegin
Sl “ hadd “ Sn
I
if ...
... goto N
coend

N: cobegin
Sl e Il S0

if cc;

. if ce;

then { if-subtree-T }
else { if-subtree-F }

coend

Fig. 7. The move-cj elementary transformation.

M: cobegin
Spl e |l Sn
Il
if ...
... goto N

... goto N,

coend

N;: cobegin
I
if ...
coend

"

N,,:cobegin

ST | S
I

if ...
coend

Fig. 8. The unify elementary transformation.

be left in the target program. This would be to guarantee
correctness in case these macronodes are a jump target.

Example 9: Consider the following code sequence:

Si: if £ > n then goto A
else

Ss: z2=2xz

S3: if z > n’ then

BANERIEE et al.: AUTOMATIC PROGRAM PARALLELIZATION

n!

nt

M:

cobegin
AP

1
if ...
. if cc;
then goto Nr
else goto Np

coend

Nr: cobegin

e I ST
I
if cCq

. { if-subtree-T }

coend

NF: cobegin

Ny

543
551
SGI

SgZ

T NS
if ccy

. { if-subtree-F }

coend
: cobegin
Syl oo |l Sal X
I
if ...
... goto N;
... goto N,
coend
cobegin
AR
I
if ...
coend
: cobegin
ST e Il 7
Il
if ...
coend
a=ex10
if y > n” then
y=y-—1
end if
else
a=z+1
end if
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end if
572 i =1+ 1
goto B
Labels A and B are in sections of the code not listed
above. Also, a, 7, y, and z are alive at the end of this
code segment. Before beginning the transformation, the
preceding sequence is transformed into a sequence of
macronodes. An assignment statement of the form ¢ =
e whose execution successor is S; is replaced by the
following macronode:
cobegin
a = e || if true then goto S;
coend

An if statement of the form

S if boolexp then
S;: ...

else
Ski

end if

is replaced by the following macronode where noop stands
for no operation:
cobegin
noop
I
if boolexp then goto S;
else goto S,
coend

This example will be based on a transformation, called
migrate, which can be defined using the three elementary
transformations listed above. Migrate moves an operation
as high as it may go in the control-flow graph. A driving
heuristic attempts to apply migrate to all the operations
and if statements in a particular order, which, for example,
could be determined by the execution probability. Let
us assume that the order of operation motions for the
code fragment above is 57,55,54,(5¢).(S8),(51),(S3),55.
The parentheses denote an attempted motion that fails due
to dependence constraints. In particular, after operation S,
has moved, operation Sy is not (and should not be) allowed
to move. This also illustrates the need in percolation sched-
uling, as in trace scheduling, for the incremental updating
of data-flow and dependence information: operation Sy
cannot be allowed to move above S3 because it would
clobber the live value of a exposed by the motion of
operation Sy. However, initially either S, or Sy could have
moved; our heuristic happened to pick S; before Sg. This
transformation yields the following code:
S cobegin

z=2xx|la=ex10|i=i+1

]

if x > n then goto A

else if y > n’ then gotoSsr
else goto S5
coend

“r:  cobegin
noop
Il
if z > n’ then goto Sg
else goto Sg
coend
3r:  cobegin
noop
Il
if z > n’ then goto B
else goto Sg
coend
Se: cobegin
y =y — 1 || if true then goto B
coend
Ss: cobegin
a =z + 1 || if true then goto B
coend
g

Formal definitions of the transformations, as well as
proofs of correctness, termination, and completeness of
percolation scheduling are discussed by Aiken [50]. A
slightly different implementation of the transformations is
described by Ebcioglu [51]. It is worth pointing out that
in percolation scheduling and in trace scheduling, data-
dependence information is computed when needed in the
course of the transformations. The flow information used
(live-dead and reaching definitions) are initially computed
and dynamically updated as part of the percolation trans-
formations. Also, it is possible to compose a compaction
algorithm based on the three elementary operations that
subsumes the effect of trace scheduling [50]. It is relatively
easy to incorporate resource constrained heuristics, regis-
ter allocation, and pipelined operations as well as other
transformations such as renaming and tree height reduction
within the percolation scheduling framework as discussed
by Ebcioglu and Nicolau [52] and by Potasman [53].

B. Parallelization of DO Loops

Because of their importance in the typical supercomputer
workload, the discussion of do loops dominates the litera-
ture on automatic parallelization. In fact, do loops are the
only construct that most of today’s compilers attempt to
parallelize whenever the objective is to exploit coarse-grain
parallelism.

Many of the do loop transformations presented in this
section are described in terms of the manipulation of
iteration dependence graphs. To simplify the discussion,
only uniform dependences are used in the examples. How-
ever, some of the techniques described also apply when
the dependences are not uniform. We begin this section
with a discussion of the better known loop parallelization
techniques. We classify them into two groups depending
on the type of parallel code generated. In Section III-B1),
we discuss techniques that generate heterogeneous parallel
code, that is, parallel code whose serial components are
not necessarily identical across threads. Next, in Sections
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HI-B2) and II-B3) we discuss techniques that generate
homogeneous parallel code obtained by assigning the entire
loop body to all the processing elements cooperating in the
execution of the loop. In homogeneous parallelization, the
set of iterations is partitioned and each subset is executed
by a different processing element. The rest of Section III-
B is devoted to transformations that help the process of
loop parallelization either by increasing the opportunities to
exploit parallelism or by producing more efficient parallel
code. In Section II-B4), we discuss several techniques that
change the order in which the iterations in the serial loop
are executed. These techniques are useful to increase data
locality, to give more flexibility to the run-time scheduler,
or to decrease the overhead associated with the parallel
execution of the loop. Finally, in Section III-B5) we discuss
two transformations—privatization and induction variable
elimination—that often help parallelization by reducing the
number of cross-iteration dependences.

Throughout this section, we use Fortran 90 syntax to
represent vector operations. Concurrent loops are repre-
sented in the notation of the last draft distributed by the
X3H5 ANSI committee on Parellel Processing Constructs
for High-Level Programming Languages. Their syntax is
similar to that of a regular do loop, except that the keyword
parallel do is used in the header.

1) Techniques that Generate Heterogeneous Parallel Code:
Heterogeneous parallel code can take the form of a parallel
loop body or of several different do loops executing in
parallel with each other. We discuss these two cases next.

Generating a Parallel Loop Body: One way, to paral-
lelize a do loop is to parallelize the loop body, using
for example the techniques discussed in Section II-A, as
illustrated in the following example.

Example 10: Consider the loop:

dol =0,N

Si: A(l) = Fi(A( - 1))

Sy: B(I) = F»(C(I),B(I - 1))
enddo

In this example and throughout this paper we assume that
functions whose names have the form F, are side-effect
free. Under this assumption, it is easy to see that in the
above loop there are no dependences between the two
statements on any iteration and therefore the loop can be
transformed into

dol =0,N
cobegin
Si: A(I) = F1(A(I - 1))
I
Sy B(I) = F(C(I), B(I - 1))
coend
enddo

O

In the preceding example and in those presented below,
the loop bodies are sequences of assignment statements.
However, the reader should keep in mind that the same
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Fig. 9. Iteration dependence graphs of loops in Example 11: (a)
Original loop; (b) skewed loop.

techniques could be applied if the bodies contained se-
quences of do loops or other compound statements.

The parallelization of the loop body can be helped by
transforming the iteration space to increase the amount
of parallelism per iteration. We will discuss three such
transformation techniques. The first is skewing the iteration
dependence graph as illustrated next.

Example 11: Consider the loop:

do/ =0,N
Si: A(l) = F1(A( - 1))
Sy: B(I) = F(A(I),C(I - 1))
Ss: C(I) = F5(C(I - 1), B(I))
Sy D(I) = Fy(D(I),C(I))
enddo

The loop body cannot be directly parallelized because,
as shown in Fig. 9(a), the statement instances in the same
iteration are linearly connected by dependence relations.
However, the iteration dependence graph can be skewed as
shown in Fig. 9(b). The resulting code, minus the first two
and the last two iterations, is:

do K =2,N
St A(K) = Fy(A(K - 1))
Sy: B(K-1) = F(A(K-1),C(K-2))
S3: C(K-1)= F3(C(K-2),B(K-1))
Sy: D(K-2) = F4(D(K-2), C(K-2))
enddo

In this version of the loop there are fewer dependences
between the statement instances in the same loop iteration.
This enables the parallelization of the loop body:
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do K =2, N

cobegin
S1: A(K) = F1(A(K - 1))
l
So: B(K-1) = F»(A(K-1),C(K~-2))
Si: C(K-1) = F5(C(K-2),B(K-1))
I
Sy: D(K—-2) = F4(D(K-2),C(K-2))
coend
enddo

Notice that skewing also implies a change in the expres-
sions involving the loop index. Thus, because the statements
Sy and S3 were shifted to the right by one position, all
references to the loop index, I, in these two statements
are replaced by K — 1. Similarly, the references to I in
statement Sy are replaced by K — 2. d

Skewing is not valid when any of the dependence edges
points against the lexicographic order in the transformed
iteration space. Thus, in the previous example, the instances
of S3 cannot be skewed to the right with respect to the
instances of Sy in Fig. 9(b) because of the edge from S3
to SQ.

The second technique to enhance the loop body paral-
lelism is based on the partial unrolling of the loop. The
objective here is to increase the size of the loop body
in order to improve the opportunities for parallelization.
The simplest case arises when there are no loop-carried
dependences, and therefore the amount of parallelism in
the loop body is increased proportionally to the number of
times the loop is unrolled. This proportional increase also
happens when the loop-carried dependence distances are
all greater than or equal to a certain integer d > 1 and the
loop is unrolled d times or less. This is illustrated in the
following example.

Example 12: Consider the loop:

do/l =0.N
Sy: A(l) = FA(A(I - 3),C(]))
Sa: D(I) = F>(A(I). D(I - 2))
enddo

Because the minimum distance of the loop-carried depen-
dences is 2, we unroll the loop twice and then parallelize
the loop body in such a way that there is a thread for each
iteration in the original loop.

do/ =0,N,2
cobegin
Sy A(I) = F1(A(I - 3),C(1))
Sy: D(I) = F2(A(I), D(I - 2))
| -
St Al +1) = F1(AI -2),C(I1+1))
S5 D(I+1)=F(A(I+1),D(I-1))
coend
enddo

O

A generalization of the technique used in this last ex-
ample, which also works for the case of multiple loops,
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was developed by Polychronopoulos [54] under the name
of cycle shrinking.

Loop unrolling has also been applied in conjunction with
Jorward substitution to increase parallelism of the loop
body. Given an assignment statement v = expression,
forward substitution replaces some or all the occurrences
of v on the right-hand sides of assignment statements with
expression. Clearly, such a substitution is only done when
it does not change the outcome of the program. Forward
substitution increases the length of the right-hand side of
assignment statements and usually enhances the opportu-
nities for parallelization, especially if tree-height reduction
is applied [55]. Tree-height reduction techniques use asso-
ciativity, commutativity, and distributivity to decrease the
height of an expression tree and therefore decrease the best
parallel execution time of an expression.

In the first version of Parafrase, forward substitution and
tree-height reduction were used in conjunction with loop
unrolling to parallelize loops with loop-carried dependences
[56]. This approach, however, has been abandoned, and
today forward substitution is used mostly to help expose the
nature of array subscripts in order to allow a more accurate
dependence analysis. A limited form of forward substitution
across conditional branches can be used in conjunction with
techniques for fine-grain parallelization such as percolation
scheduling discussed above.

We now discuss a third technique, known as software
pipelining, to enhance loop body parallelism. This tech-
nique is particularly useful to transform do loops into
fine-grain parallel code for VLIW and superscalar pro-
cessors. Software pipelining overlaps the iterations of a
loop in the process of creating a new—more parallel—loop
body. This process is analogous to the way in which
a hardware pipeline overlaps a stream of instructions.
Software pipelining achieves effects equivalent to full un-
rolling and compaction of a loop, with only partial un-
rolling. This is a non-trivial effect, as extensive unrolling
of loops—the predominant approach used for instruction-
level parallelization before the advent of software pipelin-
ing—is usually impractical due to statically unknown loop
bounds and cache/memory considerations. Furthermore,
under certain assumptions, software pipelining achieves an
optimum speedup that is not always obtained with the
partial unrolling techniques described above.

We will illustrate here one form of software pipelining,
known as perfect pipelining, which uses a modified greedy
scheduling mechanism. Let us start by assuming that a
greedy scheduling mechanism can be applied to the loop to
generate a sequence of macronodes of the form described
in Section III-A2). If there are no conditional statements,
a pure greedy scheduling strategy would start by assigning
to the first macronode the statement instances with no in-
coming dependence edges. Then, those statement instances
that depend directly on those in the first iteration would be
assigned to the second macronode. The process would be
repeated until all statement instances have been assigned.
This would clearly produce the fastest possible program if

PROCEEDINGS OF THE IEEE, VOL. 81, NO. 2, FEBRUARY 1993



we assume unlimited resources. However, a pure greedy
scheduling mechanism cannot always be applied because
it requires a complete unrolling of the loop, which, as
mentioned above, is impractical. Perfect pipelining obtains
code as fast as that produced by the greedy scheduling but
without unrolling. This is done by generating a repetitive
pattern of macro nodes while doing the greedy scheduling.
Once the repetitive pattern has been found, the translation
process terminates and the pattern becomes the new loop
body.

Example 13: The sequence of macronodes resulting when
applying greedy schedule to the code of Example 11
is shown in Fig. 10(a). The main objective of perfect
pipelining is to create a repetitive pattern of macro nodes
without increasing the execution time above the optimum.
In Fig. 10(a), it can be seen that the distance between
the instances of statements S; and Sz belonging to the
same iteration of the original loop grow without bound.
By reassigning the instances of S; as shown in Fig. 10(b),
the overall execution time of the parallel program does not
increase with respect to that in Fig. 10(a), and a pattern
can now be detected. In fact, if we ignore the first two and
the last two macronodes from the graph of Fig. 10(b), we
obtain the following compact parallel code:

do K =1,N-1

cobegin

S1: fh(K) = Fi(A(K - 1))

Ss: C(K-1)= F3(C(K~-2),B(K-1))
coend
cobegin

Sy: B“(K) = F2(A(K),C(K - 1))

Sa: D(K-1) = F4(D(K-1),C(K-1))
coend

enddo

Notice that this code is slightly different from the one
obtained by skewing. O

Perfect pipelining [57],[49], when applied to loops which,
like that in Example 13, do not contain conditional state-
ments, has been proven to generate optimal code. The
optimality is subject only to the availability of sufficient
resources, and limited by the dependences of the initial
loop. On the other hand the skewing technique discussed
above does not always produce optimal parallel code.
Perfect pipelining produces optimal schedules even when
the source loops contain conditional jumps [57], subject to
the same conditions, plus the limitations of the compaction
algorithm employed’.

7 The technique can be used with any compaction algorithm that satisfies
two (minimal) conditions: first, the compaction algorithm should not
move operations from the same iteration more than a bounded distance
away from the rest of the iteration; and second, that the compaction
algorithm is deterministic. These constraints are necessary for convergence
in the presence of conditional jumps, and are minimal in the sense that
better results (i.e., absolute optimal software pipelining) are impossible to
guarantee in general for such code [58].
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Fig. 10. Iteration dependence graphs for Example 13: (a) Iteration
space after greedey scheduling; (b) instances of S; reassigned to
create pattern.

The literature on software pipelining is extensive. This
technique was applied by hand by microprogrammers
for decades [59]. An algorithm based on the first
semi-automatic software pipelining technique [60], was
implemented in an FPS compiler [61]. Another early
approach to software pipelining, modulo scheduling, was
proposed in [62]. These techniques were limited to
loops without tests. Lam [63,64] integrates within modulo
scheduling, heuristics for resource constraints with a limited
form of conditional handling. An alternative approach to
perfect pipelining due to Ebcioglu [51] has the potential
for faster compilation time at the expense of optimality.
Still another approach is discussed in [65]; it operates by
pipelining individual paths using a compaction technique
similar to trace scheduling.

Generating Multiple Sequential Loops: The second type
of technique that generates heterogeneous parallel code
transforms serial do loops into two or more serial loops that
execute in parallel with each other. The technique is based
on a transformation called loop distribution, developed by
Muraoka [66], and also described by Banerjee er al. [67]
which partitions the statements in the loop body into a
sequence of subsequences and creates a separate loop for
each subsequence.

Example 14: Consider the loop of Example 11. We can
partition the statements in the loop body into three subse-
quences:

do K1 = 0, N
Sy: A(Ky) = Fi(A(Ky - 1))
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Fig. 11. Iteration dependence graph of loop in Example 14.
enddo 532 C(KZ) = FJ(C(KQ — 1),B(K2))
do K, = O,N post(c2(K5))
521 B(Kg) = F2(A(K2),C(K2 — 1)) enddo
S3: C(Kz) = Fy(C(Ka — 1), B(K,)) I
enddo do K3 = O.N
do K3 = O,N wait(e2(K))
Sy: D(K3) = Fy(D(K3),C(K3)) Sy: D(K3) = Fy(D(K3), O(K3))
enddo enddo
| coend

We can represent the dependence relation in a distributed
loop as an iteration dependence graph where the statement
instances in the jth loop are shifted to the right (j — 1) *
(N +1) positions, where N is the upper limit of the original
normalized loop. Fig. 11 shows the iteration dependence
graph of the distributed loop in the previous example.

From this representation of the transformation, it is clear
that a necessary and sufficient condition for a given loop
distribution to be valid is that no edge in the resulting iter-
ation dependence graph point opposite to the lexicographic
order. This is equivalent to saying that any two statements
belonging to a cycle in the statement dependence graph
have to belong to the same subsequence, which is the
traditional condition presented in the literature [14],[68].
Loop distribution in the presence of conditional statements
can be done by transforming the control dependences into
data dependences as discussed in Section II-D. This was
the approach followed by Parafrase. Another technique to
distribute loops with conditional statements is presented by
Kennedy and McKinley [69].

The last parallelization technique to be described in this
section distributes the original loop and generates a thread
for each resulting loop [70]. Synchronization instructions
are inserted where indicated by the dependences to guar-
antee correctness.

Example 15: When applied to the loop of Example 11,
this transformation produces the following code
cobegin
do K1 =0,N
Sli A(K]):Fl(A(Kl—l))
post(cl(Ky))
enddo
Il
do K =0, N
wait(el(K>))
So: B(K3) = Fo(A(K,),C(K, — 1))
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Notice that if we assume that the execution times of
each statement remain constant across iterations and ig-
nore synchronization time and loop overhead, the resulting
schedule is similar to that of the loop produced by skewing
in Example 11. As can be seen in Fig. 12, both schedules
produce the same execution time under ideal conditions. (J

In this paper we will refer to this strategy as distributed
loop parallelization.

2) Parallelization of Single Loops: In sections 111-B2)
and III-B3), we discuss the generation of homogeneous
parallel loops. First, let us consider single loops with no
cross-iteration dependences.

Example 16: Consider the following loop:

do/ =0.N
S Al = B(I) +1
Sy : CI)=A(I)+1
enddo

The representation of the iteration space of this loop is

shown in Fig. 13. Because there are no cross-iteration

dependences, the loop can be parallelized immediately into

either the form of a vector operation:
AO:N)=B0:N)+1
CO:N)=A0:N)+1

or into the form of a parallel do:

paralleldo 7 = 0. N
Syt A(I) = B(I) + 1
So: CI)=AI) +1
enddo
O

We discuss three strategies for the case when there are
cross-iteration dependences. The first uses distribution to
isolate those statements that are not involved in cross-
iteration dependences and therefore allows their transfor-
mation into parallel form. Loop distribution is also useful
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Fig. 13. TIteration dependence graph of loop in Example 16.

to isolate kernel algorithms, embedded in the loop that the
compiler can recognize and then replace with a parallel
version. Typically, parallelizing compilers recognize, by
pattern matching, reductions, other types of linear recur-
rences, and even relatively complex algorithms such as
matrix multiplication.

Example 17: Consider the loop of Example 11 and as-
sume that F;(A(K; — 1)) = A(K; - 1) + W(K3). The
loop can be distributed as shown in the previous example
and then transformed into the following vector form:

Sy: A(0: N) = partialsums(W(0 : N), A(—1))
do Kz = O,N

Sgi B(KQ) = Fz(A(Kz),C(Kz - 1))

835 C(K2) = F3(C(K2 - 1),B(K2))

enddo

Sy D(0: N)= Fy(D(0:N),C(0: N)
The function partialsums(W (0 : N), A(—1)) computes
the recurrence A(K1) A(Ky — 1) + W(K,),K; =
0,..., N in parallel. a

The second strategy is discussed by Padua et al. [71]
and Cytron [72],[73]. It transforms the original loop into a
parallel do, and cross-iteration synchronization is inserted
to enforce the data dependences. Parallel loops with cross-
iteration synchronization are called doacross loops.

Example 18: The outcome of transforming the loop of
Example 11 into doacross form is:

parallel do (ordered) 7 = 1,N

wait(el(I — 1))

A(I) = Fy(A(I - 1))

post(el(1))

wait(e2(] — 1))

B(I) = F(A(I),C(I - 1))
C(I) = F5(C(I - 1), B(I))

512

Sz:
532
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In both the transformation into do-across and in the
distributed loop parallelization method discussed in Sec-
tion III-B2), the ordering of the statements may have an
important effect on performance. Thus, in distributed loop
parallelization, fully distributing the loop may not be the
most efficient choice, and some packing of the statements
could enhance the efficiency of the resulting code or its
performance in the case of a limited number of processors.
Also, in the case of transforming into doacross, reordering
the statements in the loop body may impact performance.
Finding an optimal solution to each of those two problems
has been shown to be NP-hard [74],[72]. Simple heuristics
can be used instead, but this problem has not been studied
extensively.

The insertion of synchronization instructions in both
these strategies could be done by just inserting a wait
operation before a statement for each incident dependence,
and a post for each outgoing dependence, as was done in
the examples above. However, some of the synchronization
operations could be redundant. Techniques to avoid this re-
dundancy are described in [75],[36],[76]. Another approach
to avoid unnecessary synchronization operations is to skew
the loop body to decrease the number of cross-iteration
dependences. This technique, also called alignment, is
described in [741,[36],[77].

Example 19: Consider the following loop:

dol =0,N

Sp: A(I)=B(I)+1

Sy : CIHy=AI-1)+1
enddo

Its iteration dependence graph is shown in Fig. 14.
Horizontal parallelization could be applied to this program,
but this would require synchronization. However, if the loop
is skewed as shown in Fig. 14(b), then it can be parallelized
without the need for any cross-iteration synchronization.
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Fig. 14. Tteration dependence graphs for Example 19: (a) Iteration
space of the original loop; and (b) iteration space after skewing.

Thus, if we ignore the first and last iteration, the resulting
loop has the form:

paralleldo 7 = 1, N
Sy : Al-1)=B(I-1)+1
Sy : CIy=AI-1)+1
enddo

Sometimes, replicating some of the statements is neces-
sary to avoid all cross-iteration dependences. For example,
if Sy were replaced by C(I) = A(I — 1) + A(I), then
alignment would not be possible without changing the loop.
However, the loop can be aligned if we change it by adding
the statement X A(T) = B(I)+1 after S; and changing S,
into C(I) = A(I - 1) + X A(I). a

The choice of which one of the loop transformations
described in the preceding three sections to use depends
on several factors. The nature of the target machine is
clearly one of them. For example, perfect pipelining is
particularly appropriate for VLIW uniprocessors where
cach instruction can be considered as a cobegin—coend
with just an arithmetic operation executed on each thread.
Other types of machines, such as the Alliant multiprocessor,
favor the use of doacross by including hardware support
for ordered loops.

If there is a wide variability in the execution time of
the statements in the loop, the homogeneous parallelization
could be a better choice than parallelizing the loop body,
which may introduce unnecessary delays when waiting for
the longest statement in each iteration to complete. Another
important factor in the selection of the target parallel
construct is the organization of the data in the memory
system. For example, the choice between transforming into
doacross or applying distributed loop parallelization could
be influenced by the way in which the data are allocated.

The third and last technique to be discussed in this
section is known as partitioning. It was first discussed by
Padua [74] for single loops. It works by computing the
greatest common divisor of the cross-iteration dependence
distances.

Example 20: Consider the loop:
dol =0,N
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Sy A(I) = Fi(A(I ~ 4),C(I))
Sa: D) = Fy(A(I), D(I - 2))
enddo
Because the ged of the cross-iteration dependence distances
is 2, we unroll the loop twice and then distribute the loop.
Each resulting loop becomes a branch of a cobegin.

cobegin
dol =0,N,2
Sy A(I) = Fy(A(I - 4),0(1))
Sy: D(I) = FR(A(I),D(I - 2))
enddo
Il
do/ =1,N,2
Si: A(I) = Fy(A(I - 4),C(I))
So: D(I) = F5(A(I),D(I - 2))
enddo
coend

O

3) Parallelization of Multiple Loops: The iteration depen-
dence graphs of a multiple loop include one dimension for
each loop nest, and one extra dimension for the loop body
if it includes several statements. To facilitate the graphical
representation, the examples presented are all double loops
with a single-statement body.

As in the case of single loops, the objective of the
techniques presented here is to rearrange the loop to expose
the parallelism. These techniques can be described in terms
of simple transformations to the iteration dependence graph.

The first transformation to be discussed is interchanging.
One of its goals is to change the order of the loop headers
to generate more efficient parallel code.

Example 21: Consider the loop:

do I 1 = 0, N
do I 9 = 07 M
SlZ A(II,IQ) =F1(A(]1 —1,12))
enddo
enddo

The iteration dependence graph of this loop is presented
in Fig. 15(a), from which it is clear that the inner loop can
be parallelized because, if we consider only one column
of the iteration dependence graph at a time, there are no
cross-iteration dependences. However, the outer loop has
to proceed serially because of the horizontal dependence
edges.

If the inner loop is parallelized, the overhead of starting
the parallel loop will have to be paid once per iteration of
the outer loop. However, in this case, as shown in Fig.
15(b), we can transform the iteration dependence graph
by transposing the graph along the I, = I, line. This
transformation, which is valid in this case because no
dependence edges in the resulting graph point opposite to
the lexicographic execution order, is equivalent to inter-
changing the loop headers:

do K; =0, M
do K. 2 = 0, N
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Fig. 15. Dependence graphs of loops in Example 21.
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Fig. 16. Dependence graphs of loops in Example 23.

Sli A(Kz,K]):Fl(A(Kz—l,Kl))
enddo
enddo

This loop has the same amount of parallelism as the
original loop, but now the outer loop is parallelized and
therefore the overhead is paid only once. O

Loop interchanging is also useful for vectorization. In
fact, moving to the innermost position a loop header, L,
whose iterations are independent of each other is always
valid and allows the vectorization along the index of L.

Example 22: Assume that the second loop in the previous
example is now the input to the translator. This loop cannot
be vectorized because of the cross-iteration dependences
of the inner loop. However, if the loop headers are in-
terchanged, which leads to the first loop of the previous
example, the resulting code can be vectorized:

dol; =0,N

51: A(Il7i) :Fl(A(Il —1,:)

enddo a
The correctness of loop interchanging can be determined
using only direction vectors. This method was developed
by Steve Chen for the Burroughs Scientific Processor. Loop
interchanging is described in detail by Wolfe [14],[78], who
also studied how it can be applied to triangular loops.
Further discussions on interchanging can be found in the
work of Allen and Kennedy [79].
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The second technique discussed here is skewing, which
is very similar to the technique of the same name presented
above for single loops, except that in the present case
skewing is uniform along a particular dimension.

Example 23: Consider the loop:

do I 1 = 1, N
do I 2 = l,M
S: A(Il,lg) ZFI(A(Il —1,.[2—1))
enddo
enddo

Its iteration space is shown in Fig. 16(a), from where
it is clear that neither the outer nor the inner loop can be
parallelized. However, if the iteration space is skewed as
shown in Fig. 16(b), we obtain the following loop:

d0K1 :0,N+M—1
do K3 = max(0, K1 — N), min(M, K;)
S: A(Kl —KQ,KQ) = Fl(A(Kl —Kg—'
L,K; - 1))
enddo
enddo

After the transformation, the inner loop can be paral-
lelized. This can be seen by considering each column of
the transformed iteration dependence graph and observing
that there are no dependences across iterations. Notice that
changes in the iteration space also imply changes in the
loop limits and the subscripts. a
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The third technique to be discussed in this section is
reversal, which inverts the order in which the iterations of
a given loop are executed.

Example 24: Consider the loop:

dol; =0,N
do I, = 0.1
S: Al Iy) = Fi(A(L — 1,1, + 1))
enddo
enddo

As shown in Fig. 17(a), the inner loop can be parallelized
because there are no vertical dependence edges, but that
does not help because the inner loop has only two iterations.
The outer loop cannot be parallelized because of the cross-
iteration dependences. Also notice that interchanging is
illegal because in the transformed version of the iteration
dependence graph, some edges would point northwest,
which is opposite to the lexicographic order. However, we
could reverse the order of the inner loop, Fig. 17(b), and
then apply interchanging, Fig. 17(c), which is now valid
thanks to the reversal. This produces the following code
where the inner loop can be parallelized:

do Kl = 0,1
do Ky = O.N
S: A(K2.1—K1):Fl(A(K2~1.l—K1+1))
enddo
enddo

a

The transformations of the iteration dependence graph
illustrated above are special cases of Lamport’s wavefront
method [80]. Any combination of these transformations can
be represented formally by an » x n unimodular matrix,
where n is the number of loops in the perfect nest. (Here,
the entire loop body is treated as a single statement.)
A unimodular matrix is an integer, square matrix whose
determinant has an absolute value of 1. One advantage of
representing these transformations as matrix operations is
that the matrices can also be used to compute directly the
distance vectors, the expressions involving loop indices, and
the loop limits of the resulting loop from the corresponding
information in the original loop. Transformations based on
operations with unimodular matrices are called unimodular
transformations. Unimodular transformations have been
studied by Banerjee [81] and by Wolf and Lam [82].
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Determining the combination of transformations that pro-
duces the best code is the main objective of the compiler.
One strategy to achieve this goal, presented by Shang and
Fortes [83], uses linear programming techniques to find the
loop reorganization that produces the optimum execution
time assuming an unlimited number of processors and
ignoring overhead.

Other transformations can be applied in addition to com-
binations of the previously described three transformations
to obtain parallel loops. For example, partitioning has been
extended to multiple loops by Peir and Cytron [84], Shang
and Fortes [83], and D’Hollander [85]. Also, multiple loops
can be transformed into doacross form. One complication
that arises is that there are several possible valid orderings
in which the iterations of a parallel do loop can be stored
in the scheduling queue. The ordering has performance
implications, as discussed by Tang er al. [86].

21) Locality Enhancement and Overhead Reduction: A num-
ber of restructuring techniques deal with the transformation
of the iteration space of a loop (or multiple loops) to
reduce synchronization overhead and improve data locality.
Examples of such techniques are loop fusion [87], loop
collapsing [4], loop coalescing [88], and tiling.

Loop fusion transforms two disjoint do loops into a single
loop. If both loops are parallel, fusing them decreases the
overhead because, for example, only one parallel loop has
to be started instead of two. Loop fusion is also useful to
increase data locality as discussed by Abu Sufah er al. [89].
Loop collapsing and loop coalescing transform multiple
loops into single form. These transformations are useful
to enhance vectorization and to improve load balancing at
execution time.

Tiling partitions the iteration dependence of a loop graph
into blocks of adjacent nodes. All the blocks have the same
size and shape with the possible exception of those at the
extremes of the graph. In the case of a single loop, tiling is
done by strip-mining [87], a transformation that changes a
single loop into a double one. The outer loop steps across
the blocks, and the inner loop steps through the elements
of the block. Thus, a loop of the form:

do/ =0.N
enddo
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is transformed into:
doJ =0,N,IB
do [ = Jymin(J + IB —1,N)
enddo
enddo
The tiling of multiple loops can be done by strip-mining
each nest level and then interchanging the loops in such a
way that those that traverse the elements of the block are

moved to the innermost level. An example of this is shown
later.

Tiling has several applications. One is to generate several
nesting levels to exploit several levels of parallelism.

Example 25: Consider the loop of Example 16. The two
levels of parallelism of a multiprocessor whose components
have vector capabilities can be exploited in this loop if it
is first strip-mined, and then the outer loop is transformed
into a parallel do and the inner loop into vector form:

paralleldo J = 0, N,IB
M = min(J +IB - 1,N)
Sy AJ:M)=B(J :M)+1
Sy : CJ:-M)=AJ:M)+1
enddo
O

Tiling can also be used to reduce, at the expense of
parallelism, the frequency of synchronization and, as a
consequence, the overhead.

Example 26: Consider the loop of Example 15. Synchro-
nization operations are executed on each iteration of the
three loops. However, if the loops are strip-mined into
blocks of length B, synchronization can be performed
outside the inner loop so that it takes place only once per
block. g

The final application of tiling to be discussed here is the
improvement of program locality.

Example 27: Let us assume a multiprocessor with a
cache on each processor. The cache (and thus the memory)
is divided into blocks of I B words each, and the data are
only exchanged between the main memory and the cache as
whole blocks. Matrices are stored in column major order.

Now consider the loop:
do 11 = 0, N
do I = O,N
Sy: B(I,I,) = Fi(A(L, L))
enddo
enddo

where N is much larger than IB. If the outer loop were
transformed into a parallel do, there will be 1 + 1/IB
block transfers between the memory and the caches for
each assignment executed.
However, we can tile the loop into /B x IB blocks by
strip-mining each loop and then interchanging:
do J; =0,N,IB
do J, = 0,N,IB
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do I, = Jl,min(Jl +IB — ].,N)
do Iz = Jg,min(Jg +1IB - l,N)
512 B(Iz,Il) = Fl(A(Il,Iz))
enddo
enddo
enddo
enddo

Notice that this is equivalent to transposing the matrix A
by transposing each I B x I B submatrix. Now, if the outer
loop is parallelized, the number of cache block transfers
decreases to 2/IB per assignment. O

One of the earliest discussions on program transforma-
tions to improve locality was presented by McKellar and
Coffman [90]. Their work was extended and developed
into automatic strategies by Abu-Sufah er al. [89]. These
techniques have been used extensively. For example, they
were applied by hand to improve the performance of matrix
multiplication on the Alliant FX/80 [91]. Tiling is discussed
by Wolfe [92], Irigoin and Triolet {93], Ancourt and Irigoin
[94], Wolf and Lam [82], and Schreiber and Dongarra
[95].

Tiling influences the behavior of the memory hierarchy
indirectly by reorganizing the code to increase the effec-
tiveness of predefined memory management policy. An
alternative strategy is to control directly the movement of
data across the different levels of the memory hierarchy.
Such technique have been studied by Cytron et al. [96],
Gornish et al. [97], Callahan et al. [98], and Darnell et al.
[991.

5) Dependence Breaking Techniques: In this section we
discuss the two transformations most frequently used to
eliminate cross-iteration dependences. The first eliminates
from a loop L all assignments to induction variables. The
sequence of values of an induction variable is computed by
means of recurrence equations whose closed-form solution
can be obtained at compile time and is a function only of
loop invariant values and loop indices.?

Example 28: Consider the loop:

dol =0,N
doJ =0,M
Sy: K=K+1
Sy: B(K) = Fy(A(1,J))
enddo
enddo

In this loop, K is an induction variable because it is
computed using the equation

Ki;=K;j 1+1,j>0
Ki,O = K‘L—l,M + l,i >0
which has a closed-form solution. In fact, the value of K

in Sp is Ko+1Ix(M+1)+J+1 where Ky is the value of
K when the loop starts execution. Clearly, the statement S;

8 Notice that our definition of induction variable is more general than the
traditional one [100], which is restricted to the case where the sequence of
values assumed by the induction variable forms an arithmetic sequence.
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can be deleted if the occurrences of K in S5 are replaced
by its value. This produces the following loop:
dol =0,N
doJ =0,M
Syt B(K+Ix(M+1)+J+1)=F(A(I.J)
enddo
enddo
S3: K=K+ (N+1)*(M+1)

Notice that statement S; is needed only if K is used after
the loop terminates. The important effect of deleting S is
that it eliminates the cross-iteration dependences due to this
statement. Because the only cross-iteration dependences in
the original loop were due to S, the resulting loop can be
directly parallelized. 0

The closed-form solution for some induction variables
could sometimes be too complicated to be handled by
the current dependence analysis techniques. One way to
overcome this difficulty is to determine some important
properties (such as monotonicity) of the sequence of values
assumed by the induction variable by analyzing the original
assignments to the induction variables [111]. Techniques
to recognize induction variables and other forms of recur-
rences have been presented by Ammarguellat and Harrison
[102], Wolfe [103], and Haghighat and Polychronopoulos
[104].

The second type of transformation to be discussed in this
section operates on variables or arrays that are rewritten
on each loop iteration before they are fetched in the same
iteration. Such variables cause cross iteration, output depen-
dences, and antidependences that can be easily removed by
creating a copy of the variable or array for each iteration
of the loop.

Example 29: Consider the loop:

dol =0,N
doJ =0M
Sy: A(J) = R (C(1,J))
enddo
doJ =0,M
So: B(I,J) = Fy(A(J))
enddo
enddo

The array A is assigned in each iteration of the outer loop
before it is used. There are two related techniques to create
a copy of A per iteration. The first is expansion, which
replaces the references to A by references to an array with
an additional dimension:

dol =0.N
doJ =0M

S1: AE(1,J) = Fi(C(1,]))
enddo
doJ =0,M

So: B(I,J) = FR(AE(I,J))
enddo
enddo

Sy A(1: M) = AE(N,1: M)
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The assignment to A in S; is only needed if A is
read before being rewritten and after the loop completes.
Because the only cross-iteration dependences in the original
loop were those caused by the rewriting of A, the outer
loop can now be parallelized.

The second strategy is privatization, which, if the loop
is transformed into a parallel loop, replaces all references
to A with references to an array local to the loop body.
Expansion and privatization have the same effect on paral-
lelization, but privatization may require less space if only
one copy of the private variable is allocated per processor
and the number of processors cooperating in the execution
of the parallel loop in less than the number of iterations. [J

The previous example illustrates privatization and expan-
sion of an array. Equivalent transformations can of course
also be applied to scalars. In fact, several of the existing
parallelizers are only capable of expanding or privatizing
scalars, and most of the literature on parallelizers only
discusses the case of scalars [14],(68]. However, array pri-
vatization is very important for the effective parallelization
of many real programs. (See the papers by Feautrier [105],
Maydan er al. [106], Tu and Padua [107], and Li [108] for
array privatization and expansion techniques.) Burke et al.
[109] discuss the use of privatization for the parallelization
of acyclic code.

C. Run-Time Decisions

There are decisions that are difficult or impossible to
make at compile time. For example, to determine data
dependences exactly, the values of certain variables must
be known. For deciding which one of two nested parallel
loops is better to move to the outermost position, the
number of iterations of each loop is usually needed. In
general, for deciding which transformation produces the
best code, information that is only available at run time
may be necessary.

To cope with unknown values at compile time, the
translator may insert tests that determine crucial values at
run time and branch to the version of the code that is best
for the given value. Alternatively, the compiler can employ
run-time libraries that have some of these tests built in.

In all the examples presented in previous sections, the
dependence relations could be computed statically. This
situation facilitates the task of the compiler. Unfortunately,
the values of the subscripts are not always known at compile
time. Sometimes it is because one of the coefficients in the
expression is a variable whose value cannot be determined
at compile time.

Example 30: Consider the loop:

do/ =0.N
S: AM+ K+ 1) = B(I)
enddo
It is clear that when the variable K is not zero, the
loop can be parallelized. There are several reasons why
a compiler may not be able to determine the value of K.
For example, K could be a function of an input value or
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Fig. 18. Dependence graph of loop in Example 31.

the compiler may not be able to determine its value due to
limitations of the analysis algorithms.

The strategy that is followed in cases like this is to
generate conditional parallel code, known as two-version
loops 110}, that is executed only when K is not zero:

if K = 0 then
A(M) = B(N)
else
parallel do I = 0, N
AM+ K «I)=B()
enddo
end if

|

Other cases more complex than the previous example
may arise, and in some of these it is profitable to apply
at run time some of the dependence tests described in
Section II. (See [111] for an example.) Multiple-version
loops similar to the one used in the previous examples
can be controlled by run-time dependence tests but also
by other dynamic factors mentioned above. For example,
the loop headers could be interchanged in several ways and
one version selected for execution depending on the values
of the loop limits.

Array subscripts could have a form that is impossible to
analyze, using the dependence tests described in Section II.
However, if the subscript values are known before the loop
starts execution, it is possible to determine at run time in
which order to execute the loop in order to exploit some
parallelism.

Example 31: Consider the loop:

dol =0,4
Si: A(K(I)) = B(I)
So: Cc(I) = A(L(I))
enddo

The subscripts of the references to array A are themselves
array elements. If the values of K and L are not known at
compile time, it is not possible to determine whether or not
the loop can be parallelized. However, in many situations
parallel execution of the loop would be possible. For
example, if K =< 1,2,3,5,10 > and L =< 7,5,1,3,4 >,
the iteration dependence graph would take the form shown
in Fig. 18, from which it is clear that iterations 0,1, and
4 can execute in parallel in a first step, followed by the
parallel execution of iterations 2 and 3. O

A technique to handle, at run time, situations like the
one in the preceding example has been discussed by Zhu
and Yew [112]. In this technique, the set of iterations that
can execute in parallel and their order are computed every
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time the loop is executed. A second technique, proposed
by Saltz et al. [113), assumes that the subscripts do not
change between loop executions and therefore the subscript
analysis is only needed the first time the loop is executed.

D. Issues in Non-Fortran languages

1) Pointer Analysis: Dependence analysis in the presence
of pointers has been found to be a particularly difficult
problem. Programming languages such as C allow aliases
to be created at any program point, and between memory
locations allocated statically or dynamically. Much work
has been done on this problem, though in general it remains
unsolved. A common approach is to automatically infer
the relationship between the pointers and their targets.
For example, a compiler could infer that a pointer refers
to a linear linked list (as opposed to a circular linked
list), allowing more accurate dependence analysis during
a list traversal. This approach has been taken by numerous
researchers, with varying degrees of success [114]-[123];
recursion and cyclic relationships have posed the greatest
difficulty (the recent work of Deutsch [124] may prove
more powerful). A related approach, originally focused on
solving a different problem (automatic type inference or
lifetime analysis, for example), can be used to provide
alias information as well [125]-[127]; the viability of
this approach has not been demonstrated. Finally, vari-
ous language-based approaches [128]-[131] provide the
compiler with additional information on which to base
dependence decisions (or in the case of [132], represent
a data structure in a more parallel form).

2) Parallelization of Recursive Constructs: Recursion is
seldom used today in numerical programs, partly because it
is not part of the Fortran 77 standard. However, recursion is
the most natural way to express some algorithms, especially
nonnumerical algorithms.

We describe in this section a technique developed by
Harrison [133], called recursion splitting, which, although
it was originally developed to parallelize Lisp programs,
can be applied to programs in other languages including
Fortran 90. Assume a function of the form:

function z(P)
if g(P) then return(r(P))
Y = x(f(P))
return g(P,Y)

end

Any recursive function can be cast into this form if g,
r, f, and g are chosen appropriately. Recursion splitting
transforms the invocations to z (for example, z(Fo) where
Py could represent a sequence of parameters) into the
expression

reduce(g,expand(Py, g, f,7))
where expand(F,, g, f,7) returns the sequence
Py, Pr,- -y Py T(Prg1)-
This sequence is just the value of the parameters in suc-

cessive invocations to x; that is, P = f(Px—1). Also, m
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is the depth of thé recursion; that is q(Pm+1) is true and
q(P;) is false for ¢ < m. It is easy to see that the value
returned by the original function z is:

g(P(J» o 'vg(Pm—lvg(P"lvT(P"H-l))) o )

which can be written as reduce(g, Py, - - -, Py, 7{ Pry1)).
Once the program has been written in this form, the reduce
and expand functions can be parallelized.

Example 32: Consider the following function:
function tak(A, B, C)
if A < B then return(C)
return tak( tak(A ~ 1, B,C),
tak(B — 1,C, A),
tak(C - 1, A, B))
end
This function can be cast into the form shown above in
several ways; one is:

function tak(A, B, C)
if A < B then return(C)
Y =tak(4A - 1,B,C)
return tak( Y,
tak(B - 1,C, A),
tak(C — 1, A, B))
end
In the expand/reduce form presented above, the function
f corresponding to this version of tak is just f(A, B,C) =
A —1,B,C. Assuming that the original invocation to tak
is tak(Ao, By, Cp) and that Ay > By, then expand should
generate the sequence:

Py = (Ag, By, Cy), P

= (Ao — 1, By, Cy), -+, Py = (Bo, By, Cp)

which can be clearly computed in parallel. Also, the reduce
function in this case involves two invocations of tak for
each P;. Both of these invocations can be executed in
parallel. a

IV. EFFECTIVENESS OF AUTOMATIC PARALLELIZATION

A. Introduction

Demonstrating the effectiveness of new approaches is
a requirement in every scientific discipline. Effectiveness
measures help the designer decide what new technology
to adopt, what to set aside in favor of less complexity,
and what topics need further study. This is particularly
important in the case of parallelizing compilers, given the
large number of possible transformations.

The value of effectiveness studies of traditional compiler
technology is widely recognized, and there are a number of
papers on the subject. For example, Cocke and Markstein
[134] reported the effectiveness of several traditional tech-
niques such as common subexpression elimination, code
motion, and dead code elimination.

Unfortunately, published studies on the effectiveness of
parallelizing compilers are relatively sparse. The effective-
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ness of new compiler techniques is usually demonstrated
using simple and often artificial program segments that
can be analyzed or transformed successfully. However, the
papers introducing these new techniques also point out that
more performance studies are necessary.

In this section we present first a survey of the available
literature on the evaluation of instruction-level parallelism
(Section IV-B) and loop-level parallelizing compilers (Sec-
tion IV-C) followed in Section [V-D by a discussion of the
implications of these evaluations.

B. Performance Evaluation of Instruction-Level Parallelism

The current commercially available or soon-to-be-
available microprocessors have limited amounts of hard-
ware parallelism. Furthermore, some of the production
compilers used for these machines often lag behind the state
of the art. Nevertheless, performance previously associated
with supercomputers is becoming commonly available on
these new processors. Thus, for example, the PA-RISC HP
730, achieves 75 SPECmarks, while the new DEC Alpha
processor is projected to obtain 110 SPECmarks [135].

More fundamental studies that attempt to measure the
potential of instruction-level transformations have also be-
come available. Many of these studies assume some ideal-
ized circumstances, such as unlimited resources or complete
compile-time knowledge of dependences and branches. An
early study on numerical kernels by Nicolau and Fisher
[136] found an average of 90-fold parallelism available
at the instruction level, given absolute dependence infor-
mation and absolute branch prediction. The parallelism
found was mainly limited by the problem size, which
had to be kept small due to limitations of the experiment
implementation.

In a more recent study Wall [137] evaluated complete nu-
meric and systems benchmarks under various dependence-
analysis and branch-prediction conditions, ranging from
idealized to realistic. The results showed instruction-level
parallelism average factors of 7 for dynamic and 9 for static
scheduling under idealized conditions, with factors of about
4-5 estimated to be achievable with state-of-the-art realistic
compiler techniques.

Early efforts in instruction-level parallelism by Tjaden
and Flynn [138] and Riseman and Foster [139] investigated
the amounts of parallelism available at the machine instruc-
tion level for either static (compile-time) or dynamic (run-
time) parallelism exploitation. The former study limited
itself to finding parallelism within basic blocks,” and thus
found only factors of 2-3 speedup over sequential execu-
tion. The latter study found significantly larger speedups
(factors of 51 over sequential code, on average) but was
based on a brute-force approach that involved cloning
the hardware at each branch encountered and following
all paths in parallel. The study concluded that dynamic

9A reasonable restriction given that no global—i.e., beyond basic
block boundaries—instruction-level parallelization techniques had been
yet developed at the time.
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exploitation of parallelism beyond basic blocks was im-
practical, as the hardware required to achieve significant
speedups with the proposed approach was prohibitive. This
study also confirmed the previous results regarding the
small speedups achievable within basic blocks.

In more recent studies Ellis [41] and Lam [63] have taken
into account the development of global instruction-level
parallelization techniques. The former effort utilized trace
scheduling in the context of simulated VLIW architectures
and achieved speedups of over 10-fold over sequential
code. The latter effort performed extensive experiments
with software pipelining and hierarchical reduction!® on the
Warp machine. The results were very good in terms of the
utilization of the machine, but the actual speedups were
smaller (factors of three-fold over sequential) because of
the resource limitations of the Warp hardware.

Other work has evaluated the applicability of instruction-
level parallelism extraction techniques in systems and Al
codes. Such codes are characterized by frequent and unpre-
dictable control-flow. In experiments using a modification
of percolation scheduling and a software pipelining scheme
to generate code for a VLIW engine under construction
at IBM T.J. Watson Labs, speedups of more than 10-fold
versus the initial sequential code have been reported by
Ebcioglu [140]. In a related paper Nakatani and Ebcioglu
[141] showed that average speedups of 5.4-fold could still
be obtained in systems and AI codes, even when percolation
of operations is limited to a relatively small (moving)
window in order to reduce code explosion and compilation-
time. In an independent effort Potasman [53] evaluated
the effect of percolation scheduling used in conjunction
with software pipelining and various auxiliary techniques
(e.g., renaming) on a variety of kernels from numerical
as well as systems codes. Average speedups of 11-fold
over sequential execution were obtained, given sufficient
resources.

Perhaps the most robust results to date, using state-
of-the-art compilation techniques for a relatively large
instruction-level machine, come from the Multiflow Trace
by Colwell er al. [42]. This paper reports five-fold to
six-fold speedups on full scientific applications on a seven-
functional-unit trace machine using their trace-scheduling
compiler. This speedup was relative to a Vax 8700."' The
paper also claims “based on experience with 25 million
lines of scientific code” a speedup of two-fold to three-
fold over “comparable” vector processors, but not enough
information is provided to make an evaluation of this claim
feasible. The code-size increase from trace scheduling and
loop unrolling was reported to be approximately three-fold.
An effective technique to further limit the code explosion
in trace scheduling has also been reported by Gross and
Ward [142].

'Hierarchical reduction is a technique that combines branches of
conditionals for the purpose of data and resource analysis. This allows
the application of software pipelining techniques that normally work only
on straight-line code, to code containing conditional control flow.

! Although the the Vax 8700 and the multifiow trace have different
organizations, the basic hardware of the two machines is roughly the same.
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An evaluation of the dynamic exploitation of instruction-
level parallelism was done by Butler et al. [143], who report
that with an issue rate of 8 instructions per cycle (and
with a window-size limit placed on the total number of
instructions currently under evaluation), speedups of 2-5.8
over sequential can be obtained on the SPEC benchmarks.
Much larger potential parallelism (17-1160—fold) is found
in these benchmarks if the issue and window-size limits are
lifted (i.e., in an unrestricted (ideal) data-flow model).

C. Effectiveness of Loop Parallelizers

Three groups of studies are presented next. First, in
Section IV-C1) we present two studies that evaluate several
compilers according to the number of parallel loops that
can be recognized as such. In Section IV-C2), we discuss
comparisons of compilers based on the performance of the
resulting codes on real machines. Next, in Section IV-C3),
evaluations of the effectiveness of individual compilation
techniques are presented. Finally, in Section IV-C4), we
discuss several projects that, after studying the output of
some parallelizers, conclude that there is much room for
improvement in today’s parallelizers.

As will be seen below, the compilers most often eval-
uated are KAP and VAST. These are source-to-source
parallelizing compilers developed by Kuck & Associates
and Pacific Sierra Research, respectively. Also, there are
a few evaluations of parallelizing compilers developed
by individual computer companies. However, we should
indicate that even though the evaluation reports do not
always point this out, some of these compilers are based
on VAST (e.g., Alliant FX/8 optimizer, Cray Autotasking)
or KAP (e.g., Alliant FX/2800 optimizer).

1) Recognizing Parallelism: One way to evaluate a par-
allelizing compiler is to count the number of program
segments that can be parallelized. The two projects dis-
cussed here measure the number of do loops that the
compilers under evaluation were able to vectorize totally
or partially.

Detert [144,145] used 101 short Fortran loops to evaluate
the compilers of seven parallel machines. Callahan et al.
[146] did a similar but more extensive study using 100
short loops. A total of 19 compilers and machines were
evaluated. Both studies show that there is a wide variability
in the capabilities of existing compilers. For example, in
the second study, one of the compilers was only able to
parallelize 24 loops, while others recognized as many as
69. Table 1 summarizes these results.

Data-dependence tests, as described in Section II, are
crucial for the successful recognition of parallel loops. Early
evaluation work for these techniques was done by Shen et
al. [147] who have analyzed subscript patterns that arise
in real programs. Maydan et al. [19] and Goff et al. [20]
present statistics on the success rates of data-dependence
tests. Recently, Petersen and Padua [148] have extended this
work by relating these numbers to program performance of
a suite of Benchmark programs.
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TABLE 1 Number of Loops Vectorized Automatically. First Section: [145) (101 Loops Total). Second Section: [146] (100 Loops Total)
Machine Compiler Vectorized Partially Vectorized Not Vectorized
Alliant FX/8 FX/Fortran V2.0.18 76 14 11
Convex C1 Fortran V 2.2 81 10 10
Cray 2, Cray X-MP CFT 77 V1.2 69 0 32
Cray X-MP CFT 1.15 BF 2 75 0 26
ETA-10 VAST-2 V 2.20H2 71 8 24
Fujitsu VP200 Fortran 77 V 1.2 79 5 17
IBM 3090VF VS Fortran V 2.1.1 59 4 38
Alliant FX/8 FX/Fortran V4.0 68 5 27
Amdahl VP-E Series Fortran 77/VP V10L3( 62 11 27
Ardent Titan-1 Fortran V1.0 62 6 32
CDC Cyber 205 VAST-2 V2221 62 5 33
CDC Cyber 990E/995E VFIN V2.1 25 11 64
Convex C Series FC 5.0 69 5 26
Cray Series CF77 V3.0 69 3 28
CRAY X-MP CFT VI1.15 50 1 49
Cray Series CFT77 V3.0 50 1 49
CRAY-2 CFT2 V3.la 27 1 72
ETA-10 FTN 77 V1.0 62 7 31
Gould NP1 GCF 2.0 60 7 33
Hitachi S-810/820 Fortran77/HAP V20-2B 67 4 29
IBM 3090/VF VS Fortran V2.4 52 4 44
Intel iPSC/2-VX VAST-2 V2.23 56 8 36
NEC SX/2 Fortran77/SX V040 66 5 29
SCS-40 CFT x13g 24 1 75
Stellar GS 1000 Fortran77 prerelease 48 11 41
Unisys ISP UFTN 4.1.2 67 13 20

2) Comparing Performance Measurements: Other resear-
chers have focussed on actual timing measurements of au-
tomatically parallelized code. Thus, Nobayashi and Eoyang
[149] evaluated several vectorizing compilers by translat-
ing a collection of program kernels onto three machines:
Cray X-MP, Fujitsu VP, and NEC SX. They found that
compilers that vectorize more loop‘s do not necessarily
produce faster code. They also show that kernel measure-
ments can yield very divergent results. Table 2 summarizes
one of the measurements, which compared the perfor-
mance of the automatically restructured loops with that
of hand-restructured loops and also shows the number of
loops whose automatic/hand-optimized performance ratio is
higher than the threshold shown in the table.
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TABLE 2 Number of Loops (out of 46) whose Automatic/Optimal
Performance Ratio is higher than the Threshold in [149]

Threshold ~ NEC SX Fujitsu VP Cray Cray
X-MP X-MP CFT
CFT77

90% 14 17 9 il

80% 16 26 12 12

70% 18 26 15 15

Armnold [150] reports performance improvements pro-
duced by KAP, VAST, and FTN200, the Fortran compiler
of the Cyber 200 machines, on 18 Livermore Loops.
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TABLE 3 Vectorization Success Rate and Timing Results in [151]

FTN200 VAST-2 KAP/205 ETA
VAST-2
No. of loops 36(0) 57 (5) 60 (2) 57 (5)
(partially)
vectorized (N =
90 loops)
Sum of execution 17 15 1.5 1.2

times of 18 test
loops on Cyber
205

The measurements were taken on the Cyber 203 and 205
machines.

A related study was done by Braswell and Keech [151],
who use a set of 90 loops to evaluate KAP, FTN200,
and two versions of VAST. The target machine was the
Cyber 205. They present timing numbers for 18 of the 90
loops as well as the overall results shown in Table 3. Even
though KAP and the ETA VAST produce similar timing
results, Braswell and Keech found interesting differences
in the way these two restructurers transform individual
loops. Notice that the two VAST versions have the same
vectorization success rate but very different timings. This
is caused by one of the loops whose serial execution time
dominates the total timing. Only KAP and ETA VAST-2
were able to vectorize this loop and, in this way, improve
the performance by a factor of ten.

Another comparative study of KAP and VAST was done
by Luecke et al. [152]. They discuss a number of transfor-
mations applied to a set of loops, including the Livermore
Kernels. Differences in transformations applied by KAP
and VAST are discussed qualitatively. No performance
measurements are reported.

Cheng and Pase [153] measured speed improvements re-
sulting from the automatic parallelization (vectorization and
concurrentization) of 25 programs, including the Perfect
Benchmarks®. The measurements were taken on a Cray
Y-MP machine using KAP and fpp.'> Their baseline was
not the set of original programs but versions that were
hand-optimized for execution on one Cray processor. The
authors report small (< 10%) improvement on a single
Cray processor when the baseline programs are processed
by KAP and VAST. In concurrent mode, and with eight
processors, one-third of the programs have a speedup
between 2 and 4.5. The improvement of the other two-
thirds of the programs was insignificant. Table 4 shows the
improvements by automatic parallelization for the Perfect
Benchmarks.

3) Evaluating Individual Restructuring Techniques: The ef-
fectiveness studies described so far considered the paral-
lelizing compilers as black boxes. Another approach is to
discriminate among individual compiler techniques. Thus,

12The Cray Autotasking facility is based on VAST technology.
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Cytron et al. [156] studied the performance degradation of
the EISPACK algorithms after disabling various restructur-
ing techniques of Parafrase [4]. Of the measured analysis
and transformation steps, scalar expansion was the most
effective, followed by conversion of control dependence
into data dependence, a sharp data-dependence test analysis
pass, and the recurrence recognition and substitution pass.
In their terminology, a sharp dependence test is just a
collection of tests similar to those described in Section
II. When these tests were disabled, the restructurer used
only the names of the variables, and not the subscript
expressions, to decide whether or not there was a depen-
dence. The measurements were obtained on a simulated
shared-memory architecture of 32 and 1024 processors,
respectively. The effect of disabling the transformations
was more important when the number of processors was
large.

Blume and Eigenmann [157] discussed the effective-
ness of parallelization on the Perfect Benchmarks suite.
The target machine was an eight-processor Alliant FX/80
machine. They found that 50% of the programs showed
insignificant improvements, but the remaining programs
showed a respectable improvement due to vectorization
and an additional speedup of up to four from concurrent
execution. By disabling individual restructuring techniques,
the authors were able to measure their performance im-
pact. The techniques analyzed include reduction substitu-
tion, recurrence substitution, transformation into doacross,
induction variable elimination, scalar expansion, forward
substitution, stripmining, and loop interchanging. As with
Cytron et al., the scalar expansion technique proved the
most effective, followed by the substitution of reductions.
Most other techniques had a small performance impact
and the substitution of general linear recurrences had a
consistent negative effect, probably because the number
of iterations of loops containing recurrences was relatively
small. Table 4 shows the speed improvements over the
serial program execution from both vectorization (one CPU)
and vector-concurrent (eight CPU’s) execution.

4) Evidence for Further Improvements: As important as
evaluating available compilers, is to look at existing
evidence showing potential improvements of the compiler
effectiveness. The following reports contribute to this goal.

In an early study, Kuck et al. [S6] have determined the
parallelism available in a set of algorithms. Their analyzer
detects parallelism in do loops and parallelism from tree
height reduction. The authors conclude that there is a
potential average speedup of about 10. Eigenmann et al.
[111],[155] conducted “manual compilation” experiments
to determine new transformation techniques that signifi-
cantly improve the performance of real programs. They
hand-optimized the Perfect Benchmarks for the Alliant
FX/80 and the Cedar machine. The speedups obtained
are shown in Table 4. They concluded that many of
the optimizing transformations applied by hand can be
automated in a compiler. Some of the most important
techniques were array privatization, reduction recognition,
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TABLE 4 Performance improvements of the Perfect Benchmarks. First two lines: Improvements over manually vector-optimized
programs on Cray Y-MP [153]. Third and fourth line: Improvements over serial program execution on Alliant FX8 [154].
Fifth line: manual improvements over serial program execution on Alliant FX8 [155]

ADM ARC2D BDNA DYFESM FLO52 MDG MG3D OCEAN QCD SPEC77 SPICE TRACK TRFD
Vectorized (Y-MP, 1.2 1 1 1 1 1 0.9 1.2 1 1 1 1 1
one CPU)
Vector-concurrent 1 3.1 1 1.2 2.5 1 0.9 1.1 1 1.2 1 1 1
(Y-MP, eight
CPU’s)
Vectorized (FX/8, 1.1 2.0 1.1 3.6 34 1.2 23 1.3 1.2 2.2 1.1 1.1 2.8
one CPU)
Vector-concurrent 1.3 8.0 33 43 10.2 1.1 1.6 1.3 1.2 23 1.1 1.0 22
(FX/8, eight CPU’s)
Manually improved 7.5 10.5 4.2 77 16 5.5 44 8.3 7.0 5.5 5.1 14.3

(FX/8, eight CPU’s)

and recognition of complex forms of induction variables.
They also pointed out the need for advanced interprocedural
analysis techniques. It is worth noting that many of the
transformations discussed in Section III were not found
necessary to obtain good performance. Most of the loops
could be transformed into completely parallel forms (i.c.,
vector and parallel dos without synchronization) after the
transformations just mentioned were applied.

Singh and Hennessy [158] studied the limitations of
automatic parallelization using three scientific applications.
They found that the time-consuming loop nests are of-
ten complex and require more sophisticated analysis and
data restructuring. Recommendations for further develop-
ment of automatic parallelization technology are given.
These include advances in symbolic data-dependence anal-
ysis, dataflow and interprocedural analysis, and privatiza-
tion/expansion of data structures.

Petersen and Padua [159] have compared the parallelism
found by compilers to an estimated maximum parallelism
and derived potential compiler improvements. The com-
piler used is KAP/Concurrent. The maximum parallelism
is measured by instrumenting the program so that the
execution can be simulated for an ideal machine, taking into
account all essential data dependences. It is found that both
maximum and compiler-extracted parallelism vary widely.
The authors conclude that there are potential improvements
for compilers in handling unknown values at compile time,
subscripted subscripts, non-parallelizable statements, and
subroutine calls.

D. Discussion

Table 5 summarizes the reports on loop-level paralleliza-
tion described above, including the test suites, machines,
compilers, and the measurements used in each study. The
earlier compiler effectiveness studies measured how suc-
cessfully individual loops were parallelized. As shown in
Tables 1-3, these studies agree that, under this criterion,
automatic parallelization is relatively successful. However,
even though many of these loops are extracted from real
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programs, the measurements of how effectively they can
be paralielized do not necessarily predict the behavior on
real programs. In fact, recent program-level studies have
drawn different conclusions: Many real programs are not
improved by existing compilers. This does not mean that
parallelizers fail all the time, and in fact there are some real
programs on which parallelization does a very good job.
The two most extensive measurements of the effectiveness
of parallelization on real codes are presented in [153]
and [157]. Both studies report small improvements from
automatic parallelization for a majority of the programs
studied. However, it should be remembered that these two
studies use different types of programs. Cheng and Pase
[153] start with hand-optimized codes whereas [157] starts
with unmodified programs. This is probably why [157]
reports a higher effectiveness in a few programs whereas
[153] sometimes shows performance degradations. The
(additional) automatic vectorization done in the latter study
leads to little or even negative improvement. Apparently
the automatic vectorization could not find more parallelism
than the previous manual optimization, but introduced some
overhead. It is not reported to what extent manual vector
optimizations were applied.

Another important result is that many restructuring tech-
niques were found ineffective [157], presumably because
many of the most time-consuming loops of the programs
could not be parallelized. However, it was also shown that
these loops can potentially be transformed into parallel
code [155] by advanced techniques. Hence, the existing
techniques may become more effective once more powerful
complementary compiler technology is developed.

The evaluation papers on instruction-level parallelism
(Section IV-B) have shown that corresponding compiler
technology has been developed that is able to successfully
exploit multiple functional units. However, there is room for
studies that evaluate this technology more comprehensively.

There exists evidence for potential improvements of par-
allelizing compilers. It was given by analyzing real program
patterns and deriving new compiler capabilities [161], by
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TABLE 5 Summary of Compiler Effectiveness Studies

Study Test Suite Measures Machines Compilers
K A P \Y N T S 1 F
[56] X X simulated
[150] X X X X X Cyber FTN200,
203/5 KAP,
VAST
[160] X b'e simulated Parafrase
[156) X X X simulated Parafrase
[145],[144] X X X see Table 1
[151] X X X X Cyber FTN200,
205 KAP,
VAST
[146] X X see Table 1
[152] X X NAS 160 KAP,
VAST
[149] X X X X see Table 2
[157] X X X X X Alliant KAP,
FX/8 VAST
[153]) X X X X Cray KAP,
Y-MP fpp
[158]) X X b3 Alliant VAST
FX/8
[111],[155]) X X X X FX/8, KAP
Cedar
[159] X X X simulated KAP

Note: test suite: K=Kernels; A=Algorithms; P=Application programs. Measures: V=shows rate of successfully vectorized loops; N=compares
performance numbers of different compilers; T=compares transformations of different compilers; S=shows speedups due to automatic parallelization;
I=evaluates individual compiler techniques; and F=discusses future compiler improvements.

optimizing programs manually and discussing the automata-
bility of the transformations applied [111],{155], and by
comparing “best” parallelism to that found by compilers
[159] and deriving new restructuring capabilities. At the
instruction-level potential advances have been pointed out
in increasing the window size when dynamically exploiting
parallelism [143].

The measurements have pointed out both success and
limitations of available automatic parallelizers. Improve-
ments are necessary to make restructurers consistently
useful tools in multiprocessor environments. The reports on
potential improvements do not prove that future compilers
will be much more effective; however, they give reason-
able indication that significant performance improvements
are possible and—perhaps more important—that efforts
are worthwhile to search for and implement new, more
powerful automatic parallelization techniques.

V. CONCLUSIONS

Many program analysis and transformation techniques
for program parallelization have been developed, primarily

BANERIJEE et al.: AUTOMATIC PROGRAM PARALLELIZATION

during the last decade. A program calculus is now emerging
that allows the formal analysis of these transformations as
well as the development of new powerful transformations.
However, these techniques are only as good as their impact
on the performance of the target program. As discussed
in Section IV-D, there is a need for more experimental
evaluation and analysis of the nature of real programs.

The ultimate goal of research in program parallelization
is to develop a methodology that will be effective in
translating a wide range of sequential programs for use with
several classes of scalable parallel machines. Although it is
not clear how close we are to that goal, it is clear is that we
are not there yet and that our research effort must continue
because of the great impact that effective parallelizers are
bound to have on the ordinary users’ acceptance of paraliel
machines.
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